
Sequence Learning Introduction

Korbinian Riedhammer

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM

Today

- Logistics
- Why I teach this class
- Why you should take this class
- Motivation
- Syllabus
- What you should bring to this class

Logistics

- Materials: <u>https://seqlrn.github.io</u> (continuously updated...)
- Mondays at 9.45a SP.467, discussion on Teams (Code: y6n8dbx)
- Exam:
 - <u>mandatory</u> assignments in python (pair-programming ok; individual submissions required)
 - 20' oral exam in the last week of lecture period (calendar week 27)

Why I teach this class

- Industry background in speech recognition/indexing (mod9.io)
- Research focus
 - Speech processing for medical applications (eg. stuttering, dementia)
 - Speech recognition for indexing/search
 - Sequence learning for industrial applications (mostly anomaly detection)

Why you should take this class

- Machine learning is the future*
- Many applications are to sequences, not single observations
- Understand the foundations of sequence classification

*or at least a very well paid part of it

Flashback: Verbmobil Research project 1993-2000 (!)

https://www.youtube.com/watch?v=DcG9-KWx0Fg

Memory Clinic Cooperation with Klinikum Nürnberg

Can we use speech processing to automate dementia tests?

Table 1: Automated SKT scoring on manual transcriptions (Trans.) and automatic speech recognition with (ASR-5) and without (ASR-1) the top five word alternatives. Column Top-21 refers to top 21 speakers and ASR-5.

ID	Test/Task	Trans.	ASR-1	ASR-5	Top-21	ID	Test	Trans.	ASR-1	ASR-5	Top-
1 2 3 6 7	naming objects reproducing objects reading numbers counting symbols interference test	0.89 1.00 0.94 0.90 0.99	0.70 0.58 0.85 0.59 0.97	0.81 0.71 0.86 0.58 0.98	0.89 0.83 0.94 0.54 0.99	1 2 3 4 6 -	 verbal fluency test Boston Naming Test MMSE word list learning word list recall 	0.98 0.70 0.71 0.94 0.99	0.82 0.14 0.07 0.62 0.68	0.85 0.24 0.35 0.70 0.81	0.91 0.47 0.52 0.75 0.75
8 9 -	naming after distraction recognizing objects attention score	0.89 0.92	0.75 0.50 0.84 0.62	0.90 0.55 0.82 0.78	0.97 0.68 0.85 0.02		total	0.71	0.37	0.49	0.6
-	total score	0.98	0.62 0.81	0.78 0.89	0.93						

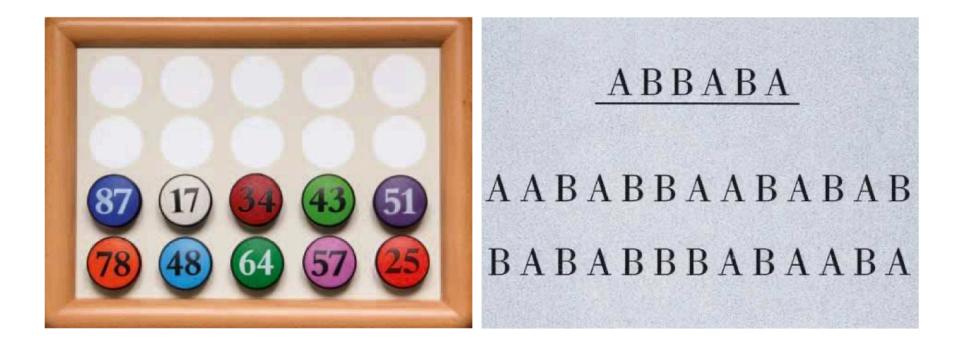


Table 2: Automated CERAD scoring on manual transcriptions (Trans.) and automatic speech recognition with (ASR-5) and without (ASR-1) the top five word alternatives. Column Top-21 refers to top 21 speakers and ASR-5.

Data Sources Analog signals (discretized)

- Microphones
- Vibrations
- Conductivity
- Ambient: pressure, temperature, humidity, ...
- Positional: GPS, gyro, distances
- User input: key-press, gestures, pressure, swipe, ... \bullet

Data Sources Digital or "Big Data" signals

- Text 🐼
- Log streams
- Network traffic
- Events (IoT, MQTT, ...)
- User-generated content (Twitter, blogs, ...)

Tooling

- python3
- jupyter
- <u>numpy/scipy</u>
- <u>PyTorch</u>
- <u>Cansformers</u>

Syllabus

- Basic algorithms
 - Matching and comparing (discrete) sequences, Dynamic programming
- Statistical modeling
 - Markov chains, hidden Markov models
 - Maximum likelihood, expectation maximisation
- Neural networks
 - Feed-forward and recurrent networks
 - Attention and transformers
 - Transfer learning
- Reinforcement learning

Assignments

- Jupyter notebooks for every chapter
- Submission mandatory (but not graded)
- Programming
- Evaluation lacksquare
- Transfer to similar tasks or data sets

What you should bring to this class

- A little bit of probability theory
- A little bit of optimization theory
- Algorithms and programming
- even harder...

• Curiosity and perseverance: understanding is hard, implementing sometimes