Sequence Learning Feed-Forward Networks for Sequence Data

Korbinian Riedhammer

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM

Feed-Forward Networkson sequence data

many-to-one

many-to-many

Context is Crucial

Example: sentiment classification

Solution: Use context windows to learn temporal relations

Connectionist HMM

Renals et al., 1992: Connectionist Probability Estimation in the DECIPHER Speech Recognition System

• Observation: At decoding time, we need emission probabilities of all (active) states

• Problem: GMMs don't generalize well

 Idea: Use NN to "predict" emission probs for all states at the same time

Connectionist HMM

- requires alignment
- "one-hot encoding"
- cross-entropy loss

↓
$$b_1(...)$$
 0
 $b_2(...)$ 1
.... 1
 $b_S(....)$ 0

 X_1

- Bi-grams probabilities limit the cont
- How could we learn (not count) these?

• Recall n-gram probabilities: count observed ngrams, use back-off for unseen

text:
$$P(w_1, w_2, ..., w_n) = P(w_1) \prod_{i=2}^{N} P(w_i | w_{i-1})$$

Why word-embeddings?

Very enjoyable nonsense, this movie

Neutral

Positiv

Negativ

One-hot representation

very	enjoyable	nonsense	this	movie
1	0	0	0	0
			0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

One-hot representation

very	enjoyable	nonsense	this	movie	film
1	0	0	0	0	
0	1	0	0	0	
0			0	0	
0	0	1	0	0	
0	0	0	1	0	
0	0	0	0	1	

One-hot representation

Problems:

- \rightarrow No relationships between words
- (e.g., synonyms like film/movie)
- → Vocabulary size explodes

very	enjoyable	nonsense	this	movie	film
1	0	0	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1

How to improve?

- fixed size vectors
- meaningful representations

do

g	movie	film

How to improve?

- words
- meaning encoded in values
- distributed representations

dog	movie	film		
	0.9	0.8	0.8	"moves"
	0.0	0.6	0.6	art
	0.9	0.8	0.2	US-English
	0.0	0.0	1.0	creature
	1.0	1.0	0.5	noun

How would you automatically generate distributed representations?

...

Behind the tree **<u>hides</u>** a **<u>hairy</u>**, **small <u>Wolpertinger</u>**.

...

Behind the tree **hides** a **hairy**, **small Wolpertinger**.

A **small tabby** cat **hides** behind the barn.

Behind the tree **hides** a **hairy**, **small Wolpertinger**.

A small tabby cat hides behind the barn.

A <u>scruff little dog hides</u> under the car.

"You shall know a word by the company it keeps."

J.R. Firth, A synopsis of linguistic theory 1930-55, 1957

- General idea:
 - Embeddings can be automatically learnt from data
 - Enough data represents covers many relationships
 - Include the context / context words

I would like a glass of apple juice.

An apple grows on the tree.

Yesterday, my father baked an apple pie.

She drank a glass of orange juice.

There is an orange tree in the backyard.

First, peel the orange.

target word:	0
	0
movie	0
	0
	0
	0
	1

	0	
	0	
	0	
	1	W_{C}
••••		U
	0	
	0	
	0	
		0 0 0 1 0 0

0.1

0.2

. . .

0.9

0.0

Where do the projection matrices W_T and W_C come from? \rightarrow They have to be learned!

Word2Vec Skip-gram

- Skip-gram:
 - choose context words to generate positive samples
 - around the target word
 - Example:
 - Let's go see a movie at the cinema

must be in relationship to target word, e.g., environment of +/- 2 words

Word2Vec **Negative sampling**

- Negative sampling:
 - choose random words from the vocabulary
 - label as negative samples
 - Sampling frequency depending or of words in the dataset
 - Let's go see a movie at the cinem

on the frequency	Zielwort	Kontextwort	Label
	movie	see	1
a>	movie	dear	0
	movie	autotomy	0
	movie	where	0

Word2Vec Training

Word2Vec Training

Word2Vec Where will embeddings be extracted?

- independent of vocabulary size
- smaller dimensionality than vocabulary size
- representation of relationships between words

Word2Vec Problem solved

Very enjoyable nonsense, this movie

very	enjoyable	nonsense	this	movie
0.6	0.01	0.03	0.3	0.01
0.02	0.9	0.32	0.88	0.12
0	0.2	0.25	0	0.25
0.22	0.33	0.8	0.1	0.2
0.88	0.65	0.23	0.24	0.1
0.01	0.23	0.65	0.44	0.9

Attention:

W_T is usually pre-trained on large databases, only "fine-tuning" necessary later

Continuous Bag of Words (CBOW) Predict center word given context

Mikolov et al., 2013. "Efficient Estimation of Word Representations in Vector Space"

Visualization of semantic relationships of words;

Good embeddings encode semantic relationships

Male-Female

Verb tense

Country-Capital

https://www.tensorflow.org/images/linear-relationships.png

Word2Vec Limitations

- Out-of-Vocabulary
 - Also: typos, compounds

• Also: slang, shortening

Shared radical eat eats eaten eater eating

Figures: https://amitness.com/2020/06/fasttext-embeddings/

FastText

- Solution:
 - Use sub-words (character n-grams) instead
 - Re-use skip-gram and negative sampling
 - Bojanowski 2017: 3-6 grams

• Observation: Words are inherently a problem (OOV, typos, morphology, etc.)

Bojanowski, Grave, Joulin and Mikolov, 2017: Enriching Word Vectors with Subword Information

FastText **Step 1: Decompose to Sub-Words**

- eating —> <eating> • Enclose any word in the training set with <>
- Extract character n-grams with sliding window

Use hashing to reduce memory; count for bin instead of actual token

- <eating>
- 3-grams <ea eat ati tin ing ng>

FastText **Step 2: Modify Skip-Gram & Negative Sampling**

- Sum up the n-gram vectors and the vector of the actual word
- Sample positive and negative context (word vectors)
- Compute dot-product for actual and negative context, and use SGD to update parameters

FastText Insights

 Impro analo rich la

			word2vec- skipgram	word2vec- cbow	fa
oves performance on syntactic word Dav tasks significantly for morphologically		Czech	52.8	55.0	77
anguage like Cz	ech and German	German	44.5	45.0	56
<u>Singular/plural</u>	Base/Comparative	English	70.1	69.9	74
cat → cats	good → better	Italian	51.5	51.8	62
uug	rough —> r	L		1	

 Degrades performance on semantic ana tasks compared to Word2Vec.

woman — > queen

		word2vec-skipgram	word2vec-cbow	fas
alogy	Czech	25.7	27.6	27
	German	66.5	66.8	62
	English	78.5	78.2	77
	Italian	52.3	54.7	52

FastTextInsights

- Using sub-word information with character-ngrams has better performance than CBOW and skip-gram baselines on wordsimilarity task.
- Representing out-of-vocab words by summing their subwords has better performance than assigning null vectors.

		skipgra	cbo	FT null	FT cha
Arabic	WS353	51	52	54	
	GUR35	61	62	64	•
German	GUR65	78	78	81	
	ZG222	35	38	41	
English	RW	43	43	46	
	WS353	72	73	71	•
Spanish	WS353	57	58	58	
French	RG65	70	69	75	•
Romani	WS353	48	52	51	
Russian	HJ	69	60	60	

Time-delay Neural Networks Waibel et al. 1989

Peddinti et al., 2015. "A time delay neural network architecture for efficient modeling of long temporal contexts"

- Frames are typically features (MFCC, word embeddings, …)
- Concatenate frames to form contexts
- Go from narrow to wide with layers
- Lower layers learn "local" features
- Higher layers learn temporal relationships

ConvNets

- Motivation:
 - Convolution of signal with special kernels can be a great feature
 - Well established in computer graphics (eg. Sobel edge detector)
- 1D time series: 1D convolutions
 - "within-feature convolutions"
- 2D image: 2D convolutions
 - "across-feature convolutions"

Dumoulin, V. and Visin, F. "A guide to convolution arithmetic for deep learning"

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

ConvNets Building Blocks

- Convolution:
 - kernel size, eg. 3x3, 1x3
 - stride, step size, eg. 1
 - padding, what to do at the edges? eg. zero-pad
- Pooling to reduce/increase resolution
 - average, max, ...

Historic Note

- TDNN (1989): effectively 1D convolutions
- 4.7%)

LeCun at al., 1998: LeNet-5 architecture, MNIST error rate 0.8% (regular FF:

Recap Feed-Forward Networks for Sequence Data

- Use context windows, eg. by concatenation
- Use embeddings for discrete symbols (which effectively use 1-hot)
- Use convolutions (1D, 2D) to extract temporal structure from context window
- Works for all modalities:
 - Audio: eg. MFB, MFCC
 - Text: Word Vectors