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Context is Crucial

this

Example: sentiment classification

movie is not bad

neutral good bad

Solution: Use context windows to learn temporal relations



Drawbacks

• Context (or filter) size is fixed  no long-term dependencies


• Context is always used  large input or intermediate layers


• What happens at beginning/end of sequence?


• Is there another (better?) way to encode sequential information?

→

→



Today’s Menu

• Working with sequences


• Feed-forward networks and sequences


• Recurrent neural networks


• “vanilla” RNN


• Long short-term memory networks (LSTM)



Sequences!

GSERM- Deep Learning: Fundamentals and Applications

• Previously: , where


•  : (deep) neural network


•  : independent sample


•  : single output (class label)


• For the rest of the week:


•  : sequence of  observations


•  : sequence of  outputs (class labels)


• …this will add another dimension to our tensors!

y = f(x)

f

x

y

x = x1, x2, …, xM M

y = y1, y2, …, yN N



Sequences!

•  : “many-to-one”


• speaker identification


• sentiment classification


• fraudulent transaction


•  : “many-to-many”


•  : “time-synchronous”, strict 1:1 alignment 


• speech recognition, part-of-speech tagging, …


•  : flexible alignment (if any)


• machine translation, summarization, …

M > 1, N = 1

M > 1, N > 1

M ≡ N xt → yt

M ≠ N



Many-to-One

neutralthis movie is not bad

Sentiment 
Classification



Many-to-Many, M  N≡

DT

this movie is not bad

NN VBZ RB JJ

Part-of-Speech 
Tagging



Many-to-Many, M  N≠

this movie is not bad

der Film basst scho

???

Machine 
Translation



One-to-Many

old man with woolen mittens

Image Captioning



Terminology (revisited)

?this movie is not bad

encoder

? this movie is not bad

?this movie is not bad der Film passt schon

encoder - decoder

decoder



Recurrent Neural Networks

Figures: Manning et al.,  
Stanford cs224n



Recurrent Neural Networks
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Recurrent Neural Networks

• Advantages:


• Can process any length input


• Computation scheme allows information to remain “in the loop”


• Model size doesn’t increase for longer input context


• Same weights applied at every timestep  “symmetry” in compute


• Disadvantages


• Recurrence is slow: can’t parallelize over time


• In practice, difficult to access history

→



Training RNNs

• Forward pass = “unrolling”


• Loss computation:


• many-to-one: at last observation/state (ignore previous outputs)


• many-to-many: at every time step


• Gradient computation:


• back-propagation through time (BPTT)


• shared weights = shared gradients
Figures: Manning et al.,  

Stanford cs224n



Example: RNN-LM

Figures: Manning et al.,  
Stanford cs224n



Example: RNN-LM
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Example: RNN-LM

Figures: Manning et al.,  
Stanford cs224n



Example: RNN-LM

Teacher Forcing

Figures: Manning et al.,  
Stanford cs224n



Back-Propagation for RNNs 

Figures: Manning et al.,  
Stanford cs224n



Back-Propagation Through Time (BPTT)

Multiplications along

the path, just like in

a (very) deep net!

Figures: Manning et al.,  
Stanford cs224n



Gradient Flow Revisited

Figures: Manning et al.,  
Stanford cs224n
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Gradient Flow Revisited
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Gradient Flow Revisited
Figures: Manning et al.,  

Stanford cs224n



Exploding Gradient?



What about the vanishing gradient?



Long Short-Term Memory RNNs (LSTMs)

• Hochreiter & Schmidhuber, 1997 (and Gers et al., 2000)


• At each time , there is a hidden state  and cell state 


• Both are vectors length 


• Cell stores long-term information in 


• LSTM can read, erase and write information from/to the cell


• “read” etc. is metaphorically… it’s all matrix math ops

t h(t) c(t)

n

c



LSTM: the math

Figures: Manning et al., Stanford cs224n



LSTM: visually

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

The + is the key!

Think Chain Rule!



Why does it work (or at least help)?

• The cell state is based on (scalar) multiplication and addition 
 numerically stable


• Gate values at 1 or 0 can help to preserve/delete information


• …no winner takes all: LSTM does better, but has similar issues like RNNs


• In 2013-2015, LSTMs became SOTA for many sequence tasks (and 
predominant for NLP tasks)


• (now pretty much replaced by transformers)

→



Vanishing Gradient (revisited)

• VG is not just an RNN problem!


• The deeper the (FF) net, the more likely it is (chain rule)


• Choice of non-linearity is crucial


• Lower layers learn slow/hard to train


• Solution for FF-DNNs: 


• residual connections 
(aka skip-connections, “ResNets”)


• In principle similar to LSTM approach


• The main issue/risk is repeated 
multiplication of same weight matrix

"Deep Residual Learning for Image Recognition", 
He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf



Simplified: Gated Recurrent Unit (GRU)

• similar to an LSTM
• has a forget gate
• fewer parameters than an  

LSTM, because it has no output gate
• similar performance on certain tasks 

(polyphonic music modeling,  
speech signal modeling,  
natural language processing)

• sometimes better performance on  
(certain) smaller and less frequent datasets

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit



GRU visualised

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

Write new cell content

candidate 
hidden state Reset gate Update gate 



GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate 
hidden state 

Update gate 

Reset 
gate 

W_z for x_t,  
U_z weights for h_t-1



GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate 
hidden state 

Update gate 

Reset 
gate 

W_r for x_t, 
 U_r weights for h_t-1



GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate 
hidden state 

Update gate 

Reset 
gate 

Update and forget 
gate process the same 

inputs (x_t, h_t-1)



GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate 
hidden state 

Update gate 

Reset 
gate candidate hidden state



GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate 
hidden state 

Update gate 

Reset 
gate hidden state at time t



GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate 
hidden state 

Update gate 

Reset 
gate hidden state at time t



GRU flavours

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

• simplified / slightly alternated gating mechanisms
• Type 1, each gate depends only on the previous hidden state and the bias

• Type 2, each gate depends only on the previous hidden state.

• Type 3, each gate is computed using only the bias.



GRU flavours

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

• Minimal gated unit
• similar to the fully gated unit
• update and reset gate vector is merged into a forget gate. 



Extensions: Multi-layer (stacked) LSTM/GRU/RNN

• RNNs are already “deep” in 
one dimension (unrolling)


• Make them “deeper” by 
applying multiple RNNs 
(“stacking”)


• Motivation similar to stacked 
filters: learn different sets of 
representations

Figures: Manning et al., Stanford cs224n



Extensions: Bi-directional LSTM/GRU/RNN

Requires access to 
full input sequence!

Figures: Manning et al., Stanford cs224n



Extensions: Multi-layer (stacked) LSTM/GRU/RNN

• RNNs are already “deep” in 
one dimension (unrolling)


• Make them “deeper” by 
applying multiple RNNs 
(“stacking”)


• Motivation similar to stacked 
filters: learn different sets of 
representations
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Summary

• RNNs encode sequence “history” in a hidden state


• The repeated multiplication of the shared weight matrix is prone to VG!


• LSTMs improve over RNNs, conceptually & numerically


• GRUs have less parameters than LSTMS but have similar performance


• Use bi-directionality if you have access to the full sequence


• RNN/LSTM/GRU help with several sequence problems:


• many-to-one: apply linear layer on last output/hidden state


• many-to-many: apply linear layer at each time step


• one-to-many: yes, you can just keep sampling from an RNN :-)


• …how about many-to-many with  ?M ≠ N


