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Context is Crucial

Example: sentiment classification o

Solution: Use context windows to learn temporal relations




Drawbacks

o Context (or filter) size is fixed — no long-term dependencies

e Context is always used — large input or intermediate layers
 What happens at beginning/end of sequence?

* |s there another (better?) way to encode sequential information?



Today’s Menu

 Working with sequences
 Feed-forward networks and sequences
 Recurrent neural networks

e “vanilla” RNN

* Long short-term memory networks (LSTM)



Sequences!

 Previously: y = f(x), where
o f:(deep) neural network
e X :Independent sample

Yy :single output (class label)

e For the rest of the week:

¢ X = X[, X, ...,X); : Sequence of M observations

* ¥ =¥,V ..., Yy : Sequence of N outputs (class labels)

e _..this will add another dimension to our tensors!



Sequences!

e M >1, N =1:“many-to-one”
* speaker identification
* sentiment classification

» fraudulent transaction
e M>1, N> 1:“many-to-many”
« M = N : “time-synchronous”, strict 1:1 alignment x, — y,
* speech recognition, part-of-speech tagging, ...

« M # N : flexible alignment (if any)

e machine translation, summarization, ...



M a ny'tO - 0 ne Sentiment

Classification

this movie IS not bad



Many'tO'Many, M — N Part-of-Speech

Tagging

this movie IS not bad




Many-to-Many, M # N Machine

Translation

this movie IS not bad

??7?

der Film basst scho



Image Captioning

- old man with woolen mittens




Terminology (revisited)

encoder

decoder

this movie IS not bad » » der Film passt schon

encoder - decoder



Recurrent Neural Networks

outputs
(optional) {

hidden states <

|nputsequence
(any length) {




Recurrent Neural Networks

output distribution
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Recurrent Neural Networks

* Advantages:
e Can process any length input
 Computation scheme allows information to remain “in the loop”

 Model size doesn’t increase for longer input context

 Same weights applied at every timestep — “symmetry” in compute
 Disadvantages
* Recurrence is slow: can’t parallelize over time

* |n practice, difficult to access history



Training RNNs

 Forward pass = “unrolling”

* | .oss computation:
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 many-to-many: at every time step

 Gradient computation:

* back-propagation through time (BPTT)

* shared weights = shared gradients
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Predicted

= negative log prob
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Example: RNN-LM

= negative log prob
of “opened”
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Example: RNN-LM
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Predicted
prob dists

Example: RNN-LM

Loss — JW@) + J@ @) + JC()

]
)

+ JA@B) +..
A A
g3 y(4)
A A
U U
h(3) h(4)

=

]
)

=

|
)

Y

Y

coco]mg»[ctto

EL

students
7 (2)

oooo]g{oocc

El

opened
7 (3)

o(4)

Teacher Forcing

cooc]g{tnoc

el

their
7 (4)

exams

J(6) = % pRARI()

t=1



Back-Propagation for RNNs
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Back-Propagation Through Time (BPTT)
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Answer: Backpropagate over
timesteps i=t,...,0, summing
gradients as you go.

This algorithm is called
“backpropagation through time”
[Werbos, P.G., 1988, Neural
Networks 1, and others]

Multiplications along oJ% _
the path, just like in oWr |-
a (very) deep net!

Question: How do we
calculate this?




Gradient Flow Revisited




Gradient Flow Revisited
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Gradient Flow Revisited
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Gradient Flow Revisited
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Gradient Flow Revisited
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Gradient Flow Revisited
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Vanishing gradient problem:
When these are small, the gradient

What happens if these are small? signal gets smaller and smaller as it
backpropagates further




Figures: Manning et al.,
Stanford c¢s224n

Gradient Flow Revisited

h(4)

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.




Exploding Gradient?

learning rate
£
grew = gold _ a4 (6)

gradient



What about the vanishing gradient?

h®) = ¢ (Whh(t_l) + W,z® 4 b)



Long Short-Term Memory RNNs (LSTMs)

 Hochreiter & Schmidhuber, 1997 (and Gers et al., 2000)

+ At each time , there is a hidden state £ and cell state ¢*

e Both are vectors length n

e Cell stores long-term information in ¢
e LSTM can read, erase and write information from/to the cell

* “read” etc. Is metaphorically... it’s all matrix math ops



N

LSTM: the math
Forget gate: controls what is kept vs
forgotten, from previous cell state
Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hidden state

(

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some h(t) _ O(t)
content from the cell

Figures: Manning et al., Stanford cs224n
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Sigmoid function: all gate
values are between 0O and 1
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All these are vectors of same length n
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Gates are applied using element-wise
(or Hadamard) product: ()




LSTM: visuall

The + Is the key!
Think Chain Rule!

Write some new cell content

Forget some
cell content

Output some cell content
to the hidden state

Compute the

forget gate

Compute the ® Compute the Compute the
input gate new cell content output gate

O — > —<

- : http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
Neural Network Pomtw!se Vector Concatenate Copy P g P g
Layer Operation Transfer




Why does it work (or at least help)?

* The cell state is based on (scalar) multiplication and addition
— numerically stable

 Gate values at 1 or O can help to preserve/delete information
e ...no winner takes all: LSTM does better, but has similar issues like RNNs

* |In 2013-2015, LSTMs became SOTA for many sequence tasks (and
predominant for NLP tasks)



Vanishing Gradient (revisited)

VG is not just an RNN problem!
* The deeper the (FF) net, the more likely it is (chain rule)

* Choice of non-linearity is crucial

* Lower layers learn slow/hard to train
e Solution for FF-DNNs:

* residual connections
(aka skip-connections, “ResNets”)

* |n principle similar to LSTM approach

X |

v
weight layer
F(x) l relu -
weight layer identity
F(x) +x

relu
Figure 2. Residual learning: a building block.

 The main issue/risk is repeated
multiplication of same weight matrix

"Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994,

“ueep ResSiaudl Le'dﬂllﬂg 101 nnage HGC()gHIII()H",
He et al, 2015.




Simplified: Gated Recurrent Unit (GRU)

e similar to an LSTM

* has a forget gate

* fewer parameters than an ht-1
LSTM, because it has no output gate

* similar performance on certain tasks
(polyphonic music modeling,
speech signal modeling,
natural language processing)

* sometimes better performance on
(certain) smaller and less frequent datasets

y[t]

h[t]

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit



Write new cell content

GRU visualised

ht-1] —-—.— +— hit]
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Reset gate
J hidden state

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit



GRU

W_z for x_t,
U_z weights for h_t-1

Update gate
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W r for x_t,
U_r weights for h_t-1

Update gate
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Update and forget
gate process the same

Inputs (x_t, h_t-1) Update gate
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GRU

Update gate
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GRU

Update gate
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GRU

Update gate
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GRU flavours

* simplified / slightly alternated gating mechanisms
* Type 1, each gate depends only on the previous hidden state and the bias

2y = 04(Uzhi—1 + b,)

re = Ug(Urht—l + b,)

* Type 2, each gate depends only on the previous hidden state.
Lt — O'g(Uzht_l)

Tt — Jg(Urht—l)

* Jype 3, each gate is computed using only the bias.

2y = 0g4(b,)

Tt — Ug(br)

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit



GRU flavours

* Minimal gated unit
* similar to the fully gated unit
* update and reset gate vector is merged into a forget gate.
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Extensions: Multi-layer (stacked) LSTM/GRU/RNN

The hidden states from RNN layer i
are the inputs to RNN layer i+1

* RNNs are already “deep” In RNN layer 3
one dimension (unrolling)

 Make them “deeper” by
applying multiple RNNs
(“stacking”)

RNN layer 2

e Motivation similar to stacked
filters: learn different sets of
representations

RNN layer 1
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Extensions: Bi-directional LSTM/GRU/RNN

Concatenated
hidden states

Backward RNN

Forward RNN
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Requires access to
full Input sequence!



Extensions: Multi-layer (stacked) LSTM/GRU/RNN

The hidden states from RNN layer i
are the inputs to RNN layer i+1

* RNNs are already “deep” In RNN layer 3
one dimension (unrolling)

 Make them “deeper” by
applying multiple RNNs
(“stacking”)

RNN layer 2

e Motivation similar to stacked
filters: learn different sets of
representations

RNN layer 1
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Summary

* RNNs encode sequence “history” in a hidden state
* The repeated multiplication of the shared weight matrix is prone to VG!
 LSTMs improve over RNNs, conceptually & numerically
 GRUs have less parameters than LSTMS but have similar performance
* Use bi-directionality if you have access to the full sequence
* RNN/LSTM/GRU help with several sequence problems:
* many-to-one: apply linear layer on last output/hidden state
* many-to-many: apply linear layer at each time step

e one-to-many: yes, you can just keep sampling from an RNN :-)

e ...how about many-to-many with M #= N ?



