
Korbinian Riedhammer

GSERM- Deep Learning: Fundamentals and Applications

Session 7: Recurrent Neural
Networks

Context is Crucial

this

Example: sentiment classification

movie is not bad

neutral good bad

Solution: Use context windows to learn temporal relations

Drawbacks

• Context (or filter) size is fixed no long-term dependencies

• Context is always used large input or intermediate layers

• What happens at beginning/end of sequence?

• Is there another (better?) way to encode sequential information?

→

→

Today’s Menu

• Working with sequences

• Feed-forward networks and sequences

• Recurrent neural networks

• “vanilla” RNN

• Long short-term memory networks (LSTM)

Sequences!

GSERM- Deep Learning: Fundamentals and Applications

• Previously: , where

• : (deep) neural network

• : independent sample

• : single output (class label)

• For the rest of the week:

• : sequence of observations

• : sequence of outputs (class labels)

• …this will add another dimension to our tensors!

y = f(x)

f

x

y

x = x1, x2, …, xM M

y = y1, y2, …, yN N

Sequences!

• : “many-to-one”

• speaker identification

• sentiment classification

• fraudulent transaction

• : “many-to-many”

• : “time-synchronous”, strict 1:1 alignment

• speech recognition, part-of-speech tagging, …

• : flexible alignment (if any)

• machine translation, summarization, …

M > 1, N = 1

M > 1, N > 1

M ≡ N xt → yt

M ≠ N

Many-to-One

neutralthis movie is not bad

Sentiment
Classification

Many-to-Many, M N≡

DT

this movie is not bad

NN VBZ RB JJ

Part-of-Speech
Tagging

Many-to-Many, M N≠

this movie is not bad

der Film basst scho

???

Machine
Translation

One-to-Many

old man with woolen mittens

Image Captioning

Terminology (revisited)

?this movie is not bad

encoder

? this movie is not bad

?this movie is not bad der Film passt schon

encoder - decoder

decoder

Recurrent Neural Networks

Figures: Manning et al.,  
Stanford cs224n

Recurrent Neural Networks

Figures: Manning et al.,  
Stanford cs224n

Recurrent Neural Networks

• Advantages:

• Can process any length input

• Computation scheme allows information to remain “in the loop”

• Model size doesn’t increase for longer input context

• Same weights applied at every timestep “symmetry” in compute

• Disadvantages

• Recurrence is slow: can’t parallelize over time

• In practice, difficult to access history

→

Training RNNs

• Forward pass = “unrolling”

• Loss computation:

• many-to-one: at last observation/state (ignore previous outputs)

• many-to-many: at every time step

• Gradient computation:

• back-propagation through time (BPTT)

• shared weights = shared gradients
Figures: Manning et al.,  

Stanford cs224n

Example: RNN-LM

Figures: Manning et al.,  
Stanford cs224n

Example: RNN-LM

Figures: Manning et al.,  
Stanford cs224n

Example: RNN-LM

Figures: Manning et al.,  
Stanford cs224n

Example: RNN-LM

Teacher Forcing

Figures: Manning et al.,  
Stanford cs224n

Back-Propagation for RNNs

Figures: Manning et al.,  
Stanford cs224n

Back-Propagation Through Time (BPTT)

Multiplications along

the path, just like in

a (very) deep net!

Figures: Manning et al.,  
Stanford cs224n

Gradient Flow Revisited

Figures: Manning et al.,  
Stanford cs224n

Gradient Flow Revisited

Figures: Manning et al.,  
Stanford cs224n

Gradient Flow Revisited

Figures: Manning et al.,  
Stanford cs224n

Gradient Flow Revisited

Figures: Manning et al.,  
Stanford cs224n

Gradient Flow Revisited

Figures: Manning et al.,  
Stanford cs224n

Gradient Flow Revisited

Figures: Manning et al.,  
Stanford cs224n

Gradient Flow Revisited
Figures: Manning et al.,  

Stanford cs224n

Exploding Gradient?

What about the vanishing gradient?

Long Short-Term Memory RNNs (LSTMs)

• Hochreiter & Schmidhuber, 1997 (and Gers et al., 2000)

• At each time , there is a hidden state and cell state

• Both are vectors length

• Cell stores long-term information in

• LSTM can read, erase and write information from/to the cell

• “read” etc. is metaphorically… it’s all matrix math ops

t h(t) c(t)

n

c

LSTM: the math

Figures: Manning et al., Stanford cs224n

LSTM: visually

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

The + is the key!

Think Chain Rule!

Why does it work (or at least help)?

• The cell state is based on (scalar) multiplication and addition 
 numerically stable

• Gate values at 1 or 0 can help to preserve/delete information

• …no winner takes all: LSTM does better, but has similar issues like RNNs

• In 2013-2015, LSTMs became SOTA for many sequence tasks (and
predominant for NLP tasks)

• (now pretty much replaced by transformers)

→

Vanishing Gradient (revisited)

• VG is not just an RNN problem!

• The deeper the (FF) net, the more likely it is (chain rule)

• Choice of non-linearity is crucial

• Lower layers learn slow/hard to train

• Solution for FF-DNNs:

• residual connections 
(aka skip-connections, “ResNets”)

• In principle similar to LSTM approach

• The main issue/risk is repeated 
multiplication of same weight matrix

"Deep Residual Learning for Image Recognition",
He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf

Simplified: Gated Recurrent Unit (GRU)

• similar to an LSTM
• has a forget gate
• fewer parameters than an  

LSTM, because it has no output gate
• similar performance on certain tasks 

(polyphonic music modeling,  
speech signal modeling,  
natural language processing)

• sometimes better performance on  
(certain) smaller and less frequent datasets

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

GRU visualised

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

Write new cell content

candidate
hidden state Reset gate Update gate

GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate
hidden state

Update gate

Reset
gate

W_z for x_t,
U_z weights for h_t-1

GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate
hidden state

Update gate

Reset
gate

W_r for x_t,
 U_r weights for h_t-1

GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate
hidden state

Update gate

Reset
gate

Update and forget
gate process the same

inputs (x_t, h_t-1)

GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate
hidden state

Update gate

Reset
gate candidate hidden state

GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate
hidden state

Update gate

Reset
gate hidden state at time t

GRU

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate
hidden state

Update gate

Reset
gate hidden state at time t

GRU flavours

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

• simplified / slightly alternated gating mechanisms
• Type 1, each gate depends only on the previous hidden state and the bias

• Type 2, each gate depends only on the previous hidden state.

• Type 3, each gate is computed using only the bias.

GRU flavours

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

• Minimal gated unit
• similar to the fully gated unit
• update and reset gate vector is merged into a forget gate.

Extensions: Multi-layer (stacked) LSTM/GRU/RNN

• RNNs are already “deep” in
one dimension (unrolling)

• Make them “deeper” by
applying multiple RNNs
(“stacking”)

• Motivation similar to stacked
filters: learn different sets of
representations

Figures: Manning et al., Stanford cs224n

Extensions: Bi-directional LSTM/GRU/RNN

Requires access to
full input sequence!

Figures: Manning et al., Stanford cs224n

Extensions: Multi-layer (stacked) LSTM/GRU/RNN

• RNNs are already “deep” in
one dimension (unrolling)

• Make them “deeper” by
applying multiple RNNs
(“stacking”)

• Motivation similar to stacked
filters: learn different sets of
representations

Figures: Manning et al., Stanford cs224n

Summary

• RNNs encode sequence “history” in a hidden state

• The repeated multiplication of the shared weight matrix is prone to VG!

• LSTMs improve over RNNs, conceptually & numerically

• GRUs have less parameters than LSTMS but have similar performance

• Use bi-directionality if you have access to the full sequence

• RNN/LSTM/GRU help with several sequence problems:

• many-to-one: apply linear layer on last output/hidden state

• many-to-many: apply linear layer at each time step

• one-to-many: yes, you can just keep sampling from an RNN :-)

• …how about many-to-many with ?M ≠ N

