Session 7: Recurrent Neural Networks

Korbinian Riedhammer

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM

Context is Crucial

Example: sentiment classification

Solution: Use context windows to learn temporal relations

Drawbacks

- Context (or filter) size is fixed \rightarrow no long-term dependencies
- Context is always used \rightarrow large input or intermediate layers
- What happens at beginning/end of sequence?
- Is there another (better?) way to encode sequential information?

Today's Menu

- Working with sequences
- Feed-forward networks and sequences
- Recurrent neural networks
 - "vanilla" RNN
 - Long short-term memory networks (LSTM)

Sequences!

- Previously: y = f(x), where
 - f: (deep) neural network
 - *x* : independent sample
 - y : single output (class label)
- For the rest of the week:
 - $x = x_1, x_2, \dots, x_M$: sequence of M observations
 - $y = y_1, y_2, \dots, y_N$: sequence of N outputs (class labels)
- ...this will add another dimension to our tensors!

Sequences!

- M > 1, N = 1: "many-to-one"
 - speaker identification
 - sentiment classification
 - fraudulent transaction
- M > 1, N > 1: "many-to-many"
 - $M \equiv N$: "time-synchronous", strict 1:1 alignment $x_t \rightarrow y_t$
 - speech recognition, part-of-speech tagging, ...
 - $M \neq N$: flexible alignment (if any)
 - machine translation, summarization, ...

Many-to-One

Sentiment Classification

neutral

Many-to-Many, $M \equiv N$

Part-of-Speech Tagging

Many-to-Many, $M \neq N$

One-to-Many

old

Image Captioning

Terminology (revisited)

encoder - decoder

Recurrent Neural Networks

Recurrent Neural Networks

output distribution

 $\hat{oldsymbol{y}}^{(t)} = ext{softmax}\left(oldsymbol{U}oldsymbol{h}^{(t)} + oldsymbol{b}_2
ight) \in \mathbb{R}^{|V|}$

hidden states $\boldsymbol{h}^{(t)} = \sigma \left(\boldsymbol{W}_h \boldsymbol{h}^{(t-1)} + \boldsymbol{W}_e \boldsymbol{e}^{(t)} + \boldsymbol{b}_1 \right)$ $oldsymbol{h}^{(0)}$ is the initial hidden state

word embeddings $\boldsymbol{e}^{(t)} = \boldsymbol{E} \boldsymbol{x}^{(t)}$

words / one-hot vectors $oldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$

Recurrent Neural Networks

- Advantages:
 - Can process any length input
 - Computation scheme allows information to remain "in the loop"
 - Model size doesn't increase for longer input context
 - Same weights applied at every timestep \rightarrow "symmetry" in compute
- Disadvantages
 - Recurrence is **slow**: can't parallelize over time
 - In practice, difficult to access history

Training RNNs

- Forward pass = "unrolling"
- Loss computation:
 - many-to-one: at last observation/state (ignore previous outputs)
 - many-to-many: at every time step
- Gradient computation:
 - back-propagation through time (BPTT)
 - shared weights = shared gradients

= negative log prob of "students"

Figures: Manning et al., Stanford cs224n

•••

= negative log prob

Figures: Manning et al., Stanford cs224n

•••

Figures: Manning et al., Stanford cs224n

•••

Stanford cs224n

Back-Propagation for RNNs

Back-Propagation Through Time (BPTT)

Question: How do we calculate this?

"backpropagation through time"

chain rule!

chain rule!

So, model weights are updated only with respect to near effects, not long-term effects.

Exploding Gradient?

What about the vanishing gradient?

 $oldsymbol{h}^{(t)} = \sigma \left(oldsymbol{W}_h oldsymbol{h}^{(t-1)} + oldsymbol{W}_x oldsymbol{x}^{(t)} + oldsymbol{b}
ight)$

Long Short-Term Memory RNNs (LSTMs)

- Hochreiter & Schmidhuber, 1997 (and Gers et al., 2000)
- At each time *t*, there is a hidden state $h^{(t)}$ and cell state $c^{(t)}$
 - Both are vectors length *n*
 - Cell stores long-term information in c
 - LSTM can read, erase and write information from/to the cell
- "read" etc. is metaphorically... it's all matrix math ops

LSTM: the math

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

<u>Cell state</u>: erase ("forget") some content from last cell state, and write ("input") some new cell content

<u>Hidden state</u>: read ("output") some content from the cell

Figures: Manning et al., Stanford cs224n

Sigmoid function: all gate values are between 0 and 1

$$egin{aligned} oldsymbol{f}^{(t)} &= \sigma \left(oldsymbol{W}_f oldsymbol{h}^{(t-1)} + oldsymbol{U}_f oldsymbol{x}^{(t)} + oldsymbol{b}_f
ight) \ oldsymbol{i}^{(t)} &= \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight) \ oldsymbol{o}^{(t)} &= \sigma \left(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o
ight) \end{aligned}$$

$$egin{aligned} ilde{m{c}}^{(t)} &= anh\left(m{W}_cm{h}^{(t-1)} + m{U}_cm{x}^{(t)} + m{b}_c
ight) \ m{c}^{(t)} &= m{f}^{(t)} \circ m{c}^{(t-1)} + m{i}^{(t)} \circ ilde{m{c}}^{(t)} \end{aligned}$$

 $\rightarrow h^{(t)} = o^{(t)} \circ \tanh c^{(t)}$

Gates are applied using element-wise (or Hadamard) product: ⊙

length *n*

same

of

'ectors

Ð

All thes

LSTM: visually

Why does it work (or at least help)?

- The cell state is based on (scalar) multiplication and addition \rightarrow numerically stable
- Gate values at 1 or 0 can help to preserve/delete information
- ...no winner takes all: LSTM does better, but has similar issues like RNNs
- In 2013-2015, LSTMs became SOTA for many sequence tasks (and predominant for NLP tasks)
- (now pretty much replaced by transformers)

Vanishing Gradient (revisited)

- VG is not just an RNN problem!
 - The deeper the (FF) net, the more likely it is (chain rule)
 - Choice of non-linearity is crucial
 - Lower layers learn slow/hard to train
- Solution for FF-DNNs:
 - residual connections (aka skip-connections, "ResNets")
 - In principle similar to LSTM approach
- The main issue/risk is repeated multiplication of same weight matrix

"Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

Simplified: Gated Recurrent Unit (GRU)

- similar to an LSTM
- has a forget gate
- fewer parameters than an LSTM, because it has no output gate
- similar performance on certain tasks (polyphonic music modeling, speech signal modeling, natural language processing)
- sometimes better performance on (certain) smaller and less frequent datasets

GRU W_z for x_t, U_z weights for h_t-1

 $z_t = \sigma_g(W_z x_t + U_z h_{t-1} + b_z)$ $r_t = \sigma_q(W_r x_t + U_r h_{t-1} + b_r)$ $\hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h)$ $h_t = z_t \odot \hat{h}_t + (1 - z_t) \odot h_{t-1}$

GRU W_r for x_t, U_r weights for h_t-1

 $z_t = \sigma_g(W_z x_t / U_z h_{t-1} + b_z)$ $r_t = \sigma_g (W_r x_t + U_r h_{t-1} + b_r)$ $\hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h)$ $h_t = z_t \odot \hat{h}_t + (1 - z_t) \odot h_{t-1}$

Update and forget GRU gate process the same inputs (x_t, h_t-1)

 $egin{aligned} z_t &= \sigma_g(W_z x_t \neq U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \end{aligned}$ $\hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h)$ $h_t = z_t \odot \hat{h}_t + (1 - z_t) \odot h_{t-1}$

GRU

 $z_t = \sigma_q(W_z x_t + U_z h_{t-1} + b_z)$ $r_t = \sigma_q(W_r x_t + U_r h_{t-1} + b_r)$ $\hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h)$ $h_t = z_t \odot \hat{h}_t + (1 - z_t) \odot h_{t-1}$

candidate hidden state

GRU

 $z_t = \sigma_q(W_z x_t + U_z h_{t-1} + b_z)$ $r_t = \sigma_g(W_r x_t + U_r h_{t-1} + b_r)$ $\hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h)$ $h_t = z_t \odot \hat{h}_t + (1-z_t) \odot h_{t-1}$ hidden state at time t

GRU

 $z_t = \sigma_q(W_z x_t + U_z h_{t-1} + b_z)$ $r_t = \sigma_g(W_r x_t + U_r h_{t-1} + b_r)$ $\hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h)$ $h_t = z_t \odot \hat{h}_t + (1-z_t) \odot h_{t-1}$ hidden state at time t

GRU flavours

- simplified / slightly alternated gating mechanisms
 - Type 1, each gate depends only on the previous hidden state and the bias $z_t = \sigma_a(U_z h_{t-1} + b_z)$

$$r_t = \sigma_g(U_r h_{t-1} + b_r)$$

 Type 2, each gate depends only on the previous hidden state. $z_t = \sigma_q(U_z h_{t-1})$

$$r_t = \sigma_g(U_r h_{t-1})$$

• Type 3, each gate is computed using only the bias. $egin{aligned} z_t &= \sigma_g(b_z) \ r_t &= \sigma_g(b_r) \end{aligned}$

GRU flavours

Minimal gated unit

- similar to the fully gated unit
- update and reset gate vector is merged into a forget gate.

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ \hat{h}_t &= \phi_h(W_h x_t + U_h(f_t \odot h_{t-1}) + b_h) \ h_t &= (1 - f_t) \odot h_{t-1} + f_t \odot \hat{h}_t \end{aligned}$$

Extensions: Multi-layer (stacked) LSTM/GRU/RNN

- RNNs are already "deep" in one dimension (unrolling)
- Make them "deeper" by applying multiple RNNs ("stacking")
- Motivation similar to stacked filters: learn different sets of representations

The hidden states from RNN layer *i* are the inputs to RNN layer *i*+1

Extensions: Bi-directional LSTM/GRU/RNN

This contextual representation of "terribly" has both left and right context!

$$\overrightarrow{\boldsymbol{h}}^{(t)} = \mathrm{RNN}_{\mathrm{FW}}(\overrightarrow{\boldsymbol{h}}^{(t-1)},$$

 $\overleftarrow{\boldsymbol{h}}^{(t)} = \mathrm{RNN}_{\mathrm{BW}}(\overleftarrow{\boldsymbol{h}}^{(t+1)},$
 $\boldsymbol{h}^{(t)} = [\overrightarrow{\boldsymbol{h}}^{(t)}; \overleftarrow{\boldsymbol{h}}^{(t)}]$

Requires access to full input sequence!

Extensions: Multi-layer (stacked) LSTM/GRU/RNN

- RNNs are already "deep" in one dimension (unrolling)
- Make them "deeper" by applying multiple RNNs ("stacking")
- Motivation similar to stacked filters: learn different sets of representations

The hidden states from RNN layer *i* are the inputs to RNN layer *i*+1

Summary

- RNNs encode sequence "history" in a hidden state
 - The repeated multiplication of the shared weight matrix is prone to VG!
- LSTMs improve over RNNs, conceptually & numerically
- GRUs have less parameters than LSTMS but have similar performance
- Use bi-directionality if you have access to the full sequence
- RNN/LSTM/GRU help with several sequence problems:
 - *many-to-one:* apply linear layer on last output/hidden state
 - *many-to-many:* apply linear layer at each time step
 - one-to-many: yes, you can just keep sampling from an RNN :-)
 - ...how about many-to-many with $M \neq N$?