Session 7: Recurrent Neural
Networks

Korbinian Riedhammer

Context is Crucial

Example: sentiment classification o

Solution: Use context windows to learn temporal relations

Drawbacks

o Context (or filter) size is fixed — no long-term dependencies

e Context is always used — large input or intermediate layers
 What happens at beginning/end of sequence?

* |s there another (better?) way to encode sequential information?

Today’s Menu

 Working with sequences
 Feed-forward networks and sequences
 Recurrent neural networks

e “vanilla” RNN

* Long short-term memory networks (LSTM)

Sequences!

 Previously: y = f(x), where
o f:(deep) neural network
e X :Independent sample

Yy :single output (class label)

e For the rest of the week:

¢ X = X[, X, ...,X); : Sequence of M observations

* ¥ =¥,V ..., Yy : Sequence of N outputs (class labels)

e _..this will add another dimension to our tensors!

Sequences!

e M >1, N =1:“many-to-one”
* speaker identification
* sentiment classification

» fraudulent transaction
e M>1, N> 1:“many-to-many”
« M = N : “time-synchronous”, strict 1:1 alignment x, — y,
* speech recognition, part-of-speech tagging, ...

« M # N : flexible alignment (if any)

e machine translation, summarization, ...

M a ny'tO - 0 ne Sentiment

Classification

this movie IS not bad

Many'tO'Many, M — N Part-of-Speech

Tagging

this movie IS not bad

Many-to-Many, M # N Machine

Translation

this movie IS not bad

??7?

der Film basst scho

Image Captioning

- old man with woolen mittens

Terminology (revisited)

encoder

decoder

this movie IS not bad » » der Film passt schon

encoder - decoder

Recurrent Neural Networks

outputs
(optional) {

hidden states <

|nputsequence
(any length) {

Recurrent Neural Networks

output distribution

y'Y) = softmax (Uh(t) 4+ b2> c RV

hidden states
R — o (Whh“‘” L Weel) 4 bl)

h(0) is the initial hidden state

word embeddings
e — ppt)

words / one-hot vectors

y) = P(x®)|the students opened their)

books
l laptops
'
[-
4a A Z(;O
U
h0) h(L h(2) h(3) h(4)
O O O O O
‘ Wh S . Wh N ' Wh . Wh, S .
O O O l @ O
L O O O O
| 3] of8] .8
(1) (2) (3)] © (4)
c’lel “le| “ le| ¢ e
® @ ® O
T Tz o Ts
the students opened their
r(1) 7 (2) 7 (3) 7 (4)

Recurrent Neural Networks

* Advantages:
e Can process any length input
 Computation scheme allows information to remain “in the loop”

 Model size doesn’t increase for longer input context

 Same weights applied at every timestep — “symmetry” in compute
 Disadvantages
* Recurrence is slow: can’t parallelize over time

* |n practice, difficult to access history

Training RNNs

 Forward pass = “unrolling”

* | .oss computation:

h(0)

e

the

(1)

students

0000]—{[0000]

1

2(2)

opened

 many-to-one: at last observation/state (ignore previous outputs)

 many-to-many: at every time step

 Gradient computation:

* back-propagation through time (BPTT)

* shared weights = shared gradients

(3)

O
ey 8
O

VN

0

it

o

their
(1)

Predicted

= negative log prob
of “students”

prob dists

h(0)

oxexxy)

o(1)

]
J

Bl

Corpus =—> the

(D)

oooo]—é—{oaco

o(2)

Example: RNN-LM

|
)

>
~~
W
~—~—

3

students

el

1 (2)

oooo]g{ooot

Y

o(3)

> &
=

C

>
—~
AN
~—

S

el

opened

(3)

oooo]g{QQQQ]

Y

o(4)

oooo]g{tono:

EL

their

(4)

exams

Example: RNN-LM

= negative log prob
of “opened”

Loss — J()(p) J(2>(9)‘ J3)(9) J4)(9)

P

Predicted Gy e 5 g
prob dists A A A A
U U U U
h(O) h(1) h(2) h(3) h(4)
O O O O O
O Wh S : Wh S O Wh S O Wh N O Wh S
O O O O
o O O O O
:i[i%CB :in%CB :iIE%yé :iIE%CB
| .ofe] fg] .ofe
(1) (2) 3)| @ (4)
1ol “le|l “ el ° e
o O @ @
T T = T
Corpus —> the students opened their exams
(1) 7 (2) 2 (3) 7 (4)

Example: RNN-LM

Loss —— J)(p) J2) ()

T

T

= negative log prob
of “their”

EEI)

.

Predicted G o) §® G
prob dists A A A A
U U U U
h)__ h(}l_\ h(2) h(3) h(4)
O O O O O
O wa: Wh)‘ Wh). Wh)‘ Wh)
O O O O
L O O O O
N
W, W, W, W,
| ofe] ofg] .ofS
(1) (2) 3)| O (4)
e’leol ¢ le| ¢ le| € |o
o @® @ O

)

Corpus = the students

el

(D 2(2)

"l
EL

opened their exams

2(3) (4)

Predicted
prob dists

Example: RNN-LM

Loss — JW@) + J@ @) + JC()

]
)

+ JA@B) +..
A A
g3 y(4)
A A
U U
h(3) h(4)

=

]
)

=

|
)

Y

Y

coco]mg»[ctto

EL

students
7 (2)

oooo]g{oocc

El

opened
7 (3)

o(4)

Teacher Forcing

cooc]g{tnoc

el

their
7 (4)

exams

J(6) = % pRARI()

t=1

Back-Propagation for RNNs

J@) (6)
A
h(0) h(t—3) h(fi) h(ﬂ h(tf)——\
O O O O O
e W, W, 1@l Wi |@| Wi |@| Wr |@| W,
> > > > >

O O O O O
O O O O O

Back-Propagation Through Time (BPTT)

J(6)
h(0) h(t=3) h(t—2) h(t—1) h(t)
T GERETE R e o)
@ @ O O
0| Wi Wil |@| Wil la| Willal Wi le| Wh
> -> 5| @ -> >
@ @ O O
ot s = 9

Answer: Backpropagate over
timesteps i=t,...,0, summing
gradients as you go.

This algorithm is called
“backpropagation through time”
[Werbos, P.G., 1988, Neural
Networks 1, and others]

Multiplications along oJ% _
the path, just like in oWr |-
a (very) deep net!

Question: How do we
calculate this?

Gradient Flow Revisited

Gradient Flow Revisited

g

Gradient Flow Revisited

o A v [.;) \ -~ (A4
S IASL oht?) HJ4)
dh(1) dhtl) oh(2)

chain rule!

Gradient Flow Revisited

J4)(6)
R h(2) h(3) h(4)
W %% W
0J) oh(?) Sh3 574
oh1) oh1) Oh(2) Oh(3)

chain rule!

Gradient Flow Revisited

h(1)
144
oJ W Oh(2)
oh(1) oh(1)

h(3)
O
14 |o]
O
b
o)
[?IL(QJ

J4)(6)

h(4)

A4 H.7(4)

Oh(3) Hh(4)

chain rule!

Gradient Flow Revisited

g
AN
O O O O
O 44 O 14 O 14 O
S o | >1 >
O O O O
e . e .

Vanishing gradient problem:
When these are small, the gradient

What happens if these are small? signal gets smaller and smaller as it
backpropagates further

Figures: Manning et al.,
Stanford c¢s224n

Gradient Flow Revisited

h(4)

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

Exploding Gradient?

learning rate
£
grew = gold _ a4 (6)

gradient

What about the vanishing gradient?

h®) = ¢ (Whh(t_l) + W,z® 4 b)

Long Short-Term Memory RNNs (LSTMs)

 Hochreiter & Schmidhuber, 1997 (and Gers et al., 2000)

+ At each time , there is a hidden state £ and cell state ¢*

e Both are vectors length n

e Cell stores long-term information in ¢
e LSTM can read, erase and write information from/to the cell

* “read” etc. Is metaphorically... it’s all matrix math ops

N

LSTM: the math
Forget gate: controls what is kept vs
forgotten, from previous cell state
Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hidden state

(

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some h(t) _ O(t)
content from the cell

Figures: Manning et al., Stanford cs224n

(WhD 4 Upa® + by)

(Wih(t‘” + Uz + bi)

&t — tanh (Wch(t‘l) +U.2® + bc)
V) — F1) o (t=1) | 50 ¢ G

Sigmoid function: all gate
values are between 0O and 1

W.RED L U2 4 bo)

All these are vectors of same length n

A

o tanh ¢ w

Gates are applied using element-wise
(or Hadamard) product: ()

LSTM: visuall

The + Is the key!
Think Chain Rule!

Write some new cell content

Forget some
cell content

Output some cell content
to the hidden state

Compute the

forget gate

Compute the ® Compute the Compute the
input gate new cell content output gate

O — > —<

- : http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
Neural Network Pomtw!se Vector Concatenate Copy P g P g
Layer Operation Transfer

Why does it work (or at least help)?

* The cell state is based on (scalar) multiplication and addition
— numerically stable

 Gate values at 1 or O can help to preserve/delete information
e ...no winner takes all: LSTM does better, but has similar issues like RNNs

* |In 2013-2015, LSTMs became SOTA for many sequence tasks (and
predominant for NLP tasks)

Vanishing Gradient (revisited)

VG is not just an RNN problem!
* The deeper the (FF) net, the more likely it is (chain rule)

* Choice of non-linearity is crucial

* Lower layers learn slow/hard to train
e Solution for FF-DNNs:

* residual connections
(aka skip-connections, “ResNets”)

* |n principle similar to LSTM approach

X |

v
weight layer
F(x) l relu -
weight layer identity
F(x) +x

relu
Figure 2. Residual learning: a building block.

 The main issue/risk is repeated
multiplication of same weight matrix

"Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994,

“ueep ResSiaudl Le'dﬂllﬂg 101 nnage HGC()gHIII()H",
He et al, 2015.

Simplified: Gated Recurrent Unit (GRU)

e similar to an LSTM

* has a forget gate

* fewer parameters than an ht-1
LSTM, because it has no output gate

* similar performance on certain tasks
(polyphonic music modeling,
speech signal modeling,
natural language processing)

* sometimes better performance on
(certain) smaller and less frequent datasets

y[t]

h[t]

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

Write new cell content

GRU visualised

ht-1] —-—.— +— hit]
lt] = E 1\ E
] = =~ hif]
5 tanh| :

Reset gate
J hidden state

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

GRU

W_z for x_t,
U_z weights for h_t-1

Update gate

sssssssnnsnnfannnnnnnnnnnnnnne y[t]
24 ::o'g(WZ:Bt + U,hi_1 + bz): TILIL T y
A - I U R

AN
| IIIIII..]

A oo

re = og(Wyrxy + Uprhy—q +b,) ME1
ilt — Cbh(Whil?t + Uy, (’l“t O, ht—l) =+ bh)
he =2t ©Ohy + (1 —2¢) © hy—q

EEEEEEENJg
X

andidate
hidden state

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

W r for x_t,
U_r weights for h_t-1

Update gate

yIt]
Zt O (Wz$t ht 1 _|_ b) NEEEEE pEEEEEE
X .: + ' h[t]

A oo

: EEEEEEEERN EEEEEEEEEEEEEEERERN _
Tt _0' (W Tt T U ht 1 —|-b)E hit-11 |

(tht + Up(r: ©® hy—1) + b))
Zt O ht —+ (]. — Zt) O ht—l

G
I |

EEEEEEENJg
X

<
|

andidate
hidden state

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

Update and forget
gate process the same

Inputs (x_t, h_t-1) Update gate

y[t]

AR\ +
=0,(Wyrxy + U.hy_1 + b,) N1l TR

X e ' h[t]

S -
:¢h(tht+Uh(Tt®ht_1)—|—bh) x| . ™
=2t O hy + (1 — 2) © bt

EEEEEEENJg
X

andidate
hidden state

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

GRU

Update gate

y[t]
% = o,(Wozy + Ushe1 +b,)
A - U N

AN
| IIIIII..]

A oo

re =og(Wyrxy + Uprhi—q +b,) Mt

A A A EEEEEEFEFEEFEFEEEEEEEEEEEENEEEEEEEEEEEEEEEHDm

EEEEEEENJg
X

andidate
hidden state

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

candidate hidden state

GRU

Update gate

Zt :Ug(Wz$t+Uzht—1 _l_bz) L LLLLLLY ‘N
(N e
ry = Ug(Wr'fEt +Urhi—1 + br) b I LEEE L Fin N - hit

N

iLt = ¢p(Wht + Up(re © hy—1) + bp) :

IllllllllIllllllllllllllllllllIlllllll

ht—ZtG)ht—l-(l—Zt)@ht 1

EEEEEEENJg
X

andidate
hidden state

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

hidden state at time t

GRU

Update gate

Zt :Ug(Wz$t+Uzht—1 _l_bz) L LLLLLLY ‘N
(N e
ry = Ug(Wr'fEt +Urhi—1 + br) b I LEEE L Fin N - hit

N

iLt = ¢p(Wht + Up(re © hy—1) + bp) :

IllllllllIllllllllllllllllllllIlllllll

ht—ZtG)ht—l-(l—Zt)@ht 1

EEEEEEENJg
X

andidate
hidden state

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

hidden state at time t

GRU flavours

* simplified / slightly alternated gating mechanisms
* Type 1, each gate depends only on the previous hidden state and the bias

2y = 04(Uzhi—1 + b,)

re = Ug(Urht—l + b,)

* Type 2, each gate depends only on the previous hidden state.
Lt — O'g(Uzht_l)

Tt — Jg(Urht—l)

* Jype 3, each gate is computed using only the bias.

2y = 0g4(b,)

Tt — Ug(br)

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

GRU flavours

* Minimal gated unit
* similar to the fully gated unit
* update and reset gate vector is merged into a forget gate.

fo = og(Wyzy + Usht 1 + by)
hy = on(Whay + Up (ft © he—1) + by)
hy =(1—f;) ©hi1 + fr © hy

image: https://en.wikipedia.org/wiki/Gated_recurrent_unit

Extensions: Multi-layer (stacked) LSTM/GRU/RNN

The hidden states from RNN layer i
are the inputs to RNN layer i+1

* RNNs are already “deep” In RNN layer 3
one dimension (unrolling)

 Make them “deeper” by
applying multiple RNNs
(“stacking”)

RNN layer 2

e Motivation similar to stacked
filters: learn different sets of
representations

RNN layer 1

>

>

—(e000| {0000 —0c00|
—(e000| {0000 — 0000

T T

as terribly exciting

-— 0000 {0000 0000

~
>
4V
3
Q
=
4V
S

Extensions: Bi-directional LSTM/GRU/RNN

Concatenated
hidden states

Backward RNN

Forward RNN

©0000000)
000

]
)

~lee

| e

A

the

©0000000
000

]
J

movie

~1ee

| e

This contextual representation of “terribly”
has both left and right context!

©0000000

™

J e0e00000]

}/ﬂocoooooo]

A

)
)

O
O
O
O

f >

O
4
O
/.

]
)

was

e

terribly

e

~lee

exciting

O
4
O
[

| 0000000
0000

Z(t) = RNNBw(%(t_H), a:(t))
h® — (B ®, K O]

Requires access to
full Input sequence!

Extensions: Multi-layer (stacked) LSTM/GRU/RNN

The hidden states from RNN layer i
are the inputs to RNN layer i+1

* RNNs are already “deep” In RNN layer 3
one dimension (unrolling)

 Make them “deeper” by
applying multiple RNNs
(“stacking”)

RNN layer 2

e Motivation similar to stacked
filters: learn different sets of
representations

RNN layer 1

>

>

—(e000| {0000 —0c00|
—(e000| {0000 — 0000

T T

as terribly exciting

-— 0000 {0000 0000

~
>
4V
3
Q
=
4V
S

Summary

* RNNs encode sequence “history” in a hidden state
* The repeated multiplication of the shared weight matrix is prone to VG!
 LSTMs improve over RNNs, conceptually & numerically
 GRUs have less parameters than LSTMS but have similar performance
* Use bi-directionality if you have access to the full sequence
* RNN/LSTM/GRU help with several sequence problems:
* many-to-one: apply linear layer on last output/hidden state
* many-to-many: apply linear layer at each time step

e one-to-many: yes, you can just keep sampling from an RNN :-)

e ...how about many-to-many with M #= N ?

