Session 8: Attention

Korbinian Riedhammer

“ TECHNISCHE HOCHSCHULE NURNBERG
GEORG SIMON OHM

Recurrency reviewed

* RNN/LSTM help with several sequence problems:

e ...how about many-to-many with M #= N ?

Today’s Menu

e Neural Machine Translation
e encoder/decoder architecture

e sampling from decoders: beam search

Attention: a better modeling of context

Self-Attention: getting rid of recurrence

 Transformer architecture

Neural Machine Translation

e Data: (huge) “parallel corpus”, e.g. European parliament
e Sequence-to-sequence problem, with
e complex dependencies (word order, sex/gender, ...)
* m:n relations: phrase translations may have different lengths

e _..all trained “end to end” with two RNNs

this movie is not bad II:> I::> der Film passt schon

encoder RNN decoder RNN

Encoder RNN

NMT seq2seq Architecture

Target sentence (output)

Encoding of the source sentence. r A

Provides initial hidden state

for Decoder RNN. he hit me with a pie <END>

50 50 o0 50 50 50 50
(S fe] f3]fs e (8] (o] o] [e].[e].f¢
0 O 0
o e[e[’1e® Mo lo 1o 1o -lo O 0
_ 0 0 0 0 0 0 0 0 0 0 0
il a m’ entarté <START> he hit me with a pie
\)

v
Source sentence (input)

NNY J9p023Q

NMT seq2seq Architecture

Target sentence (output)

A

Decoder RNN he hit me with a

{\ ”&

 Encoder RNN consumes input and
produces an overall encoding

Encoder RNN

 Decoder RNN uses encoding as
initial hidden state, and generates
the target sentence ten

Source sentence (input)

J

* “end-to-end”. complete task modeled as one large network

 at training time: apply Teacher-Forcing on Decoder outputs

* at test time: use output at f as input at £ + 1

pie <END>

m’ entarté <START> he hit me with a pie

N\

NNY 412p022(d

Seq2Seq is versatile!

e Summarization: long text — short text

Dialog: previous utterance — next utterance

Parsing: input text — parse tree

Code generation: natural language — python

Speech recognition: spoken word — written word
(“Listen-Attend-Spell”, https://arxiv.org/abs/1508.01211)

http://www.apple.com/uk

EnCOder/DeCOder = negative log = negative log = negative log

Tralnlng prob of “he” prob of “with” prob of <END>
= 72]t = Jil+ Jo + T3 H Jal+ s + Je +| J7
Back-Propagation operates “end-to-end”! 91 95 Vs P Pe Ve 9
P
2 [elefel el e ool (sl (sl gl [eL8
. [
3 o e[le[e Aee>lee oo e
9 o) () o) o o) o) o) (6] o) o) o)
L
il a m’ entarté <START> h hit me with a ie
N\ J \ J
Y Y

Source sentence (from corpus) Target sentence (from corpus)

NNY J3p023Q

Sampling the Decoder

* Initialize hidden state with last state of encoder
* Use special start and end symbols
* Greedy sampling:
« Use output at time ¢ as input to time ¢ + 1
* Terminate on observing end token

e ...0r on exceeding target length

he hit me with a pie <END>
é| é[é\ é\ é[é[é‘
- = = = = = =
o0 o0 50 oD oD 50 5D
INHMAHAREEREE
o, . O
o - (@[:|@® o) o[e[:]®
O (@) O O O O O
<START> he hit me with a pie

Problems with Greedy Decoding

* Early decisions can “spoil” the best solution
* frequently, the correct token is not ranked 1st

* how to recover from wrong decisions?

Solution: Beam Search Decoding

e Core idea: instead of just going with the current best hypothesis, keep track
of k most probable partial results (“hypotheses”)

* Well-studied in Al (path finding) and speech recognition

« The larger the k (the “beam size”), the more paths needed be be kept
active...which requires memory and compute time

* When reaching end-symbol, keep exploring others and re-rank at the end
(normalizing for length)

Pros & Cons NMT

e Better performance then statistical MT , also in terms of

* fluency

* context utilization

* phrase similarities
e Single neural network to train (statMT often complex system combination)
 ...thus: less engineering effort

® But: less interpretable (and hard to debug), difficult to control

Impact of seq2seq on MT

= B Phrase-based SMT

40
B Syntax-based SMT
35

30 B Neural MT

. e Eea———
20
15
10
5
0
2013 2014 2015 2016 2017 2018 2019

http://www.meta-net.eu/events/meta-forum-2016/slides/09 _sennrich.pdf

Where’s the key issue in NMT (or: seg2seq...)

Target sentence (output)
A

* “Flagship [deep learning] task” of NLP

N
pie <END>

>
n

me with

* Many innovations pioneered

it a
in NMT (e.g.: Attention)

-
o 0 O 0 o) O O O O 0 O o)
= o ol |of o ol ol .ol Jo| .lo| .Jo| Jo
§o) (©) @ | |© o| ‘10| 10| “|o| “|le|l °|O (@)
S o |of |of |eo o] |o|] |of (o] |eo] |of |o

il a m entarté <START> he hit me with a pie

\ y,
Y

Source sentence (input)

Problems with this architecture?

Enter: Attention

P

- . . X)
Bottleneck: single last hidden state is to encode all context W

N —

 Core idea: at each step at the decoder, use a direct connection to the
encoder (states) to focus on particular parts of the input sequence

Attention: visually

dot product

Attention
scores

o o o 0 o} 0
= of |of |® .o o)
o £ o |® el |® 1@
- o) o) o) o) o
il a m’ entarté <START>
1\ J
Y

Source sentence (input)

NNY 42p032(

Attention: visually

dot product

Attention
scores

o 0 Y o) 5] (6}
= o |o| [of |@ | ®
o< o |® o '|® ’lo
. o o o o] o)
il a m’ entarté <START>
N)
Y

Source sentence (input)

NNY 12P02a(d

Attention: visually

Attention

Encoder

scores

RNN

dot product

(<) (<) (<) o)
(<) el |© o)
| |10 (<) o)
(2] () (@) 0]
il a m’ entarté <START>
1\ J
Y

Source sentence (input)

NNY J9p023Q

Attention: visually

dot product

Attention
scores

o o} 0 o}
= o| o o
i @) @) 0]
il a m’ entarté
L J

N
Source sentence (input)

<START>

NNY 49p023(

Attention: visually

Attention Use the attention distribution to take a
output weighted sum of the encoder hidden
states.

Py
-t
.
.
.
.
.
.
o D
.
-t
.
.
.
.
o

The attention output mostly contains
information from the hidden states that
received high attention.

Attention
distribution
—

Attention
scores

O o 0) o)
= | o (o o
LCJ 0] 10 (*] (0]
Lu . f T T
il a m’ entarté <START>
N)
Y

Figures: Manning et al., Stanford cs224n Source sentence (mpUt)

NNY 429P023a(

Attention: visually

Attention
distribution

Attention

Encoder

scores

RNN

Attention
output

Y
Source sentence (input)

(<) (©) (<) () @)

| |O S| e O REe)

el °|lo | |® 10

(0] (] () (0] @)

il a m’ entarté <START>
L

Concatenate attention output
with decoder hidden state, then

use to compute y; as before

NNY 42p032(

Attention: visually

Attention hit
output

Attention
distribution
—

1.

[1

1
SR |

Attention
scores

0 B SR
. S N 1
e = o lelele > o o Sometimes we take the
o e @ @ @ o 0o attention output from the
previous step, and also
/ feed it into the decoder
il a m’ entarté <START> he (along W'_th the usual
\ J decoder input).
Y

NNY 49p02a(

Figures: Manning et al., Stanford cs224n Source sentence (input)

me

Attention

Decoder RNN
—M

output
[1

lly

ViSUad

Attention

uoIlNQIIASIP
UoIlu=11y

{

S2J00S
uoIu3Y

-~
7

{

NNY
Japoou]

0000 j[e——

O00O0 je———

0000 je——

0000 [<—

Q000 [<—

0000 [<—

Q000 |<—

hit

<START> he

entarté

ml

il

Y

Source sentence (input)

with

Attention

A

AN

Decoder RNN
—M

lly

ViSUad

Attention

s
ans®

wes®
an s

™,
.
.
.
. ‘e
.. .
.
.
‘e
.
.
.
.

fll<l|\

uollnqLsIp
UOIIUBNY

IS

fll(ll\

SaJ02JS
UOIIUY

flll<l||\

NNY
Japodu]

0000 [c———

0000 [e———

0000 j[e——

0000 [¢——

0000 [<—

0000 [<—

0000 [<—

Q000 [<—

me

hit

<START> he

entarté

ml

il

Y

Source sentence (input)

Attention

Decoder RNN
—M

lly

ViSUa

Attention

.
.
‘™
.
o ‘e
s, ON
. .
0
.
‘e
.
.

~
7|

0
t‘
* N
.
0
0
0
o
.
.
0
0
0
.
.
.
0
0
0
i | 74 <
<

NS

{{

uoiINQIIASIP S240JS
uonuaNY UONUANY

{

NNY
Japoou]

0000 |c—

0000 |c—

0000 |[e———

0000 |c—

0000 |c—

0000 [<—

Q000 |[<—

0000 |[<—

Q000 |<—

me with

hit

<START> he

entarté

ml

il

Y

Source sentence (input)

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention
distribution

Attention

Encoder

scores

RNN

Source sentence (input)

Attention pie
output A
.............. =
N
S
Qe Qe ¢
(0] (©) (<) (*) (0] (o) (@) (@) (@) (@)
e |0 JO O J @ e O oL . |O o)
e |O | |0 10 e 10 o 10 (@)
o] (<) (<] (<) (@) (@) (@) (@) (@) @)
il a m’ entarté <START> he hit me with a
N\ J
Y

NNY 49p02a(

Attention: the math

« N inputs, hidden state dimension H

« Encoder hidden states: A4, ..., hy € RY

- Decoder hidden states: s, € R

- Attention scores e, = [s/hy, ..., s/ hy] € RY

« Attention distribution: @, = softmax(e,) € R

N
Attention output: @, = Z ah, € R?
i=1

. Concatenate [a; s,] € R*

Benefits of Attention

* Key contribution to NMT performance

Solves bottleneck: decoder can now “look” at complete sequence

Helps with VG through residual-like connections

with

he
hit
me
a
pie

* Provides “explainability”:

* high attention value = high impact to decision =

 soft multi-alignment entarté

Attention is General Purpose DL

* Given a set of vector values and a vector query, attention is a technique to
compute a weighted sum of the values, dependent on the query

* “the query attends to the values”
e weighted sum is a selective summary of the information

* Attention allows to obtain fixed-size representations of arbitrary set of
representations (values) based on some other representation (query)

The many variants of attention...

Basic dot-product (Bahdanau et al. 2015)

Multiplicative attention: e; = s’ Wh. € R , where W is learned

Additive attention: e; = v tanh(W,h, + W,s) € R

e ...and many others

By 2016, the SOTA was

* encode sentences with a bLSTM m
* Define some output (sentiment, summary, ...) I I I I I I

* Add attention to allow flexible memory/data access

Issues with RNNs

* Unrolled left-to-right (or vice-versa), ie. context is built-up using linear locality

* Problem: RNNs take O(seqg-len) steps for distant word pairs to “interact”

(slow! gradient!)
—000 — 000 —mm—
B EE
—> 000 > > 000 > >
/ was

The chef who ...

Info of chef has gone through
O(sequence length) many layers!

If not recurrence, how about attention?

* Recall: Attention treats each word’s representation as a query to access and
iIncorporate information of a set of values

* previously: decoder attends to encoder

 how about this: values attend to each other within the sequence?

attention All words attend

to all words in

qgttention previous layer;
most arrows here

embedding N e
b h.

are omitted

Self-Attention

* Recall: Attention operates on queries, keys and values
« Queries gy, ...,q7; q; € R4
. Keyski,...,k;; k € R?
« Values v, ...,vp; V; € R4

e Self-attention: g, k and v are drawn from the same source

. qul_kj @, = exp(eu) output; = Z a;v;
» ...dot product: 2. exp(eijr) ;
Compute key- Compute attention Compute outputs as
query affinities weights from affinities weighted sum of values

(softmax)

Self-Attention as a Building Block

o Self-attention blocks can be
stacked

* No free lunch :-(
1. no notion of order

2. (only) matrix multiplications,
all weighted averages...

3. for decoders: prevent looking
into the future

T T T T

self-attention

ki 1 v1 k, q; v, ks q3 U3 kr qr vr
T ! . !
self-attention
ki @1 vi ky, q2 v, ks q3 U3 ke qr vr
Wy W W3 Wr
The chef who food

“Fixing” Self-Attention (1)

e Sequence order

 Introduce position vectors (aka positional encoding)
p; € R iel,.. T

» Add to original value, key and query vectors (at input layer)

Vi =V T p;
qi = qi +p;
ki = ki +p;

“Fixing” Self-Attention (1)

Sources for positional embeddings

*Should allow meaningful distances between embedding vectors
\ectors follow a specific pattern/ formula
« Sinusoidal pattern
e Sequence number
|_earned

e |_eft out altogether

“Fixing” Self-Attention (1)

Most common pattern, proposed in Vaswani et al., 2017

. X = \/dmodel)?_l_PE
2i

PE(pOS,2i) = Sin(pOSIOOOOW)

20
PE(pOS,2i+1) — COS(pOSlOOOOW)

T
cos(x) = sin(x + 5)

“Fixing” Self-Attention (2)

T T T T

* Linear combinations... FTF FTF FTF FTF
» add nonlinearity! self-attention

. . T T T o000 T

* eg. Linear(Relu(Linear .) FF FF FF EE

T ! ! !

self-attention

41) W3 Wr

The chef who food

Intuition: the FF network processes the result of attention

“Fixing” Self-Attention (3) We can look at these

(not greyed out) words

* For decoders, restrict visibility of
future values [START]

* “manually” computing keys

and queries too inconvenient For encoding
these words
* For parallelization,) chef

mask out attention to future values

who

T . .
e = 14i ki) <1
Y —00,j > i

We got the building blocks:

o Self-attention:

* recurrence-free (fast!) and spanning the whole sequence
* Position encodings

* re-introduce sequence order to key, query and values
* Masking

* to allow parallel computations while “not looking into the future”

Transformer (Vaswani et al., 2017)

[predictions!]
4
Transformer

Decoder
4

[decoder attends
to encoder states]

t
Transformer

Decoder

[input sequence] [output sequence]

Transformer (Vaswani et al., 2017)
. J

T 1
LTI

1 I

Feed Forward Feed Forward
Neural Network Neural Network

t t
(T (T T 1]
[| |]
t t

T[] L]

https://jalammar.github.io/illustrated-transformer/

Key-Query-Value: visually

Input hi

Embedding

Queries q1

Keys

Values

https://jalammar.github.io/illustrated-transformer/

Q2

N
N
N

Key-Query-Value: the math

e Let X, ..., X, be the input vectors to the Transformer encoder
* Then we introduce (learnable!) matrices K, Q and V to compute

 k; = Kx; where K is the key matrix
« ¢; = Qx; where Q is the key matrix

« v, = Vx; where V is the key matrix

Scaled Dot-Product, Softmax, Sum

Input
Embedding \:D:l:’
o LetXx,,...,xrbe the input vectors Queries o [
to the Transformer encoder Keys T
« Then we introduce (learnable!) Values EEE
matrices K, Q and V to compute Score
Divide by 8 (Vdy.)
« k; = Kx; where K is the key matrix
Softmax
« ¢; = Ox; where Q is the key matrix softmax .
« v; = Vx; where V is the key matrix - T

https://jalammar.github.io/illustrated-transformer/

Attention — Multi-head attention

ATTENTION HEAD #0 ATTENTION HEAD #1

https://jalammar.github.io/illustrated-transformer/

Attention — Multi-head attention

* Transformers make use of multiple attention heads per transformer block
* Multiple ‘attentive’ views on the same concept

* This leads to multiple learnable, key, query and value projections

* All “heads” have their own, separately calculated attention output

* The attention outputs will be concatenated and then be multiplied with a
shared weight matrix

Attention — Multi-head attention

https://jalammar.github.io/illustrated-transformer/

Attention — Multi-head attention

https://jalammar.github.io/illustrated-transformer/

A
(’(Add & Normalize
| : R
: C Feed Forward) C Feed Forward)
O B R
Z1 e Z;
A : A
#| ,» LayerNorm(+)
ozl
o| jun T
- :
' (Self-Attention
. A ry
S, X LI_X mEEN
POSITIONAL é é
ENCODING
X1 D:Dj sz

. . . Thinking Machines
https://jalammar.github.io/illustrated-transformer/

ENCODER #2

ENCODER #1

Softmax)
2
Linear)
7y
DECODER #2
* *
Y 7 ,*(Add & Normalize)
Artent P x| 2 3
\~ _(_ ______ y W S:e_lfft_tc_er-\t:?r: S— \) % . (Feed Forward) (Feed Forward)
O eamceeccclheceerr e, 3
(-»(Add & Normalize) E ,*(Add & Normalize)
: SR R)
E (Feed Forward) (Feed Forward) ."(Encoder-Decoder Attention)
--------- ‘-------------------} ‘~"'"'"""""'"""""""
,»(Add & Normalize) ,-b(Add & Normalize)
: [} /) : 4 4
E C Self-Attention) ' (Self-Attention)
NPy Fooiiioo-- 3 ~)

.
............................
POSITIONAL
ENCODING

x: [x2 [
Thinking machines https://jalammar.github.io/illustrated-transformer/

Transformer: Animated

Decoding time step<iw2 3456 OUTPUT
()
(Linear + Softmax)
é) 4 T)
ENCODER DECODER
\) \. J
A i
4 D r p
ENCODER DECODER
\L) _ JJ
EMBEDDING
WITH TIME LIT 1] LITT] LITT]
SIGNAL
EMBEDDINGS HERN LI TT] CITTT]

INPUT Je suis etudiant https://jalammar.github.io/illustrated-transformer/

Transformer: Animated

Decoding time step: 1@3 4 56

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT
~\
Kencdec Vencdec (Linear + Softmax)
) (N\
ENCODERS DECODERS
J - /)
f f ' f
Lty LEffl LErld [(TTT]
I I I A B N [TTT]
Je suis étudiant PREVIOUS I
OUTPUTS

https://jalammar.github.io/illustrated-transformer/

What’s special about the Transformer?

* No recurrency (but positional encodings)

* Highly parallelizeable (hey, it’s foremost matrix multiplications)

Summary

 Attention is a great mechanism to (directly) access information from across the whole
sequence

« Helps with VG, for similar reasons like residuals

« Self-attention (where k, g, v are computed from x) is a great way to encode a sequence
without recurrence

* Transformers are a special setup of self-attention, scaled dot product, residuals and
layernorm.

 Transformers are the current state-of-the-art

* ...if you have enough data to train them :-)

