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Recurrency reviewed

* RNN/LSTM help with several sequence problems:

e ...how about many-to-many with M #= N ?



Today’s Menu

e Neural Machine Translation
e encoder/decoder architecture

e sampling from decoders: beam search

Attention: a better modeling of context

Self-Attention: getting rid of recurrence

 Transformer architecture



Neural Machine Translation

e Data: (huge) “parallel corpus”, e.g. European parliament
e Sequence-to-sequence problem, with
e complex dependencies (word order, sex/gender, ...)
* m:n relations: phrase translations may have different lengths

e _..all trained “end to end” with two RNNs

this movie is not bad II:> I::> der Film passt schon

encoder RNN decoder RNN



Encoder RNN

NMT seq2seq Architecture

Target sentence (output)

Encoding of the source sentence. r A

Provides initial hidden state
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NMT seq2seq Architecture

Target sentence (output)

A

Decoder RNN he hit me with a

{\ ”&

 Encoder RNN consumes input and
produces an overall encoding

Encoder RNN

 Decoder RNN uses encoding as
initial hidden state, and generates
the target sentence ten

Source sentence (input)

J

* “end-to-end”. complete task modeled as one large network

 at training time: apply Teacher-Forcing on Decoder outputs

* at test time: use output at f as input at £ + 1

pie <END>

m’ entarté <START> he  hit me with a pie

N\

NNY 412p022(d



Seq2Seq is versatile!

e Summarization: long text — short text

Dialog: previous utterance — next utterance

Parsing: input text — parse tree

Code generation: natural language — python

Speech recognition: spoken word — written word
(“Listen-Attend-Spell”, https://arxiv.org/abs/1508.01211)



http://www.apple.com/uk
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Sampling the Decoder

* Initialize hidden state with last state of encoder
* Use special start and end symbols
* Greedy sampling:
« Use output at time ¢ as input to time ¢ + 1
* Terminate on observing end token

e ...0r on exceeding target length

he hit me with a pie <END>
é| é[ é\ é\ é[ é[ é‘
- = = = = = =
o0 o0 50 oD oD 50 5D
INHMAHAREEREE
o, . O
o - (@[ :|@® o) o[ e[ :]®
O (@) O O O O O
<START> he hit me with a pie



Problems with Greedy Decoding

* Early decisions can “spoil” the best solution
* frequently, the correct token is not ranked 1st

* how to recover from wrong decisions?



Solution: Beam Search Decoding

e Core idea: instead of just going with the current best hypothesis, keep track
of k most probable partial results (“hypotheses”)

* Well-studied in Al (path finding) and speech recognition

« The larger the k (the “beam size”), the more paths needed be be kept
active...which requires memory and compute time

* When reaching end-symbol, keep exploring others and re-rank at the end
(normalizing for length)



Pros & Cons NMT

e Better performance then statistical MT , also in terms of

* fluency

* context utilization

* phrase similarities
e Single neural network to train (statMT often complex system combination)
 ...thus: less engineering effort

® But: less interpretable (and hard to debug), difficult to control



Impact of seq2seq on MT
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Where’s the key issue in NMT (or: seg2seq...)

Target sentence (output)
A

* “Flagship [deep learning] task” of NLP

N
pie <END>
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* Many innovations pioneered
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Enter: Attention

P

- . . X )
Bottleneck: single last hidden state is to encode all context W

N —

 Core idea: at each step at the decoder, use a direct connection to the
encoder (states) to focus on particular parts of the input sequence




Attention: visually

dot product

Attention
scores
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Attention: visually

dot product

Attention
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Attention: visually

Attention
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Attention: visually
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Attention: visually

Attention Use the attention distribution to take a
output weighted sum of the encoder hidden
states.
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Attention: visually

Attention
distribution

Attention
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Attention: visually

Attention hit
output

Attention
distribution
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Attention: visually

Figures: Manning et al., Stanford cs224n
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Attention: the math

« N inputs, hidden state dimension H

« Encoder hidden states: A4, ..., hy € RY

- Decoder hidden states: s, € R

- Attention scores e, = [s/hy, ..., s/ hy] € RY

« Attention distribution: @, = softmax(e,) € R

N
Attention output: @, = Z ah, € R?
i=1

. Concatenate [a; s,] € R*



Benefits of Attention

* Key contribution to NMT performance

Solves bottleneck: decoder can now “look” at complete sequence

Helps with VG through residual-like connections

with

he
hit
me
a
pie

* Provides “explainability”:

* high attention value = high impact to decision =

 soft multi-alignment entarté




Attention is General Purpose DL

* Given a set of vector values and a vector query, attention is a technique to
compute a weighted sum of the values, dependent on the query

* “the query attends to the values”
e weighted sum is a selective summary of the information

* Attention allows to obtain fixed-size representations of arbitrary set of
representations (values) based on some other representation (query)




The many variants of attention...

Basic dot-product (Bahdanau et al. 2015)

Multiplicative attention: e; = s’ Wh. € R , where W is learned

Additive attention: e; = v tanh(W,h, + W,s) € R

e ...and many others



By 2016, the SOTA was

* encode sentences with a bLSTM m
* Define some output (sentiment, summary, ...) I I I I I I

* Add attention to allow flexible memory/data access



Issues with RNNs

* Unrolled left-to-right (or vice-versa), ie. context is built-up using linear locality

* Problem: RNNs take O(seqg-len) steps for distant word pairs to “interact”

(slow! gradient!)
—000 — 000 —mm—
B EE
—> 000 > > 000 > >
/ was

The chef who ...

Info of chef has gone through
O(sequence length) many layers!




If not recurrence, how about attention?

* Recall: Attention treats each word’s representation as a query to access and
iIncorporate information of a set of values

* previously: decoder attends to encoder

 how about this: values attend to each other within the sequence?

attention All words attend

to all words in

qgttention previous layer;
most arrows here

embedding N e
b h.

are omitted




Self-Attention

* Recall: Attention operates on queries, keys and values
« Queries gy, ...,q7; q; € R4
. Keyski,...,k;; k € R?
« Values v, ...,vp; V; € R4

e Self-attention: g, k and v are drawn from the same source

. qul_kj @, = exp(eu) output; = Z a;v;
» ...dot product: 2. exp(eijr) ;
Compute key- Compute attention Compute outputs as
query affinities weights from affinities weighted sum of values

(softmax)



Self-Attention as a Building Block

o Self-attention blocks can be
stacked

* No free lunch :-(
1. no notion of order

2. (only) matrix multiplications,
all weighted averages...

3. for decoders: prevent looking
into the future

T T T T

self-attention

ki 1 v1 k, q; v, ks q3 U3 kr qr vr
T ! . !
self-attention
ki @1 vi ky, q2 v, ks q3 U3 ke qr vr
Wy W W3 Wr
The chef who food



“Fixing” Self-Attention (1)

e Sequence order

 Introduce position vectors (aka positional encoding)
p; € R iel,.. T

» Add to original value, key and query vectors (at input layer)

Vi =V T p;
qi = qi +p;
ki = ki +p;



“Fixing” Self-Attention (1)

Sources for positional embeddings

*Should allow meaningful distances between embedding vectors
\ectors follow a specific pattern/ formula
« Sinusoidal pattern
e Sequence number
|_earned

e |_eft out altogether



“Fixing” Self-Attention (1)

Most common pattern, proposed in Vaswani et al., 2017

. X = \/dmodel)?_l_PE
2i

PE(pOS,2i) = Sin(pOSIOOOOW)

20
PE(pOS,2i+1) — COS(pOSlOOOOW)

T
cos(x) = sin(x + 5)




“Fixing” Self-Attention (2)

T T T T

* Linear combinations... FTF FTF FTF FTF
» add nonlinearity! self-attention

. . T T T o000 T

* eg. Linear(Relu(Linear .) FF FF FF EE

T ! ! !

self-attention

41 ) W3 Wr

The chef who food

Intuition: the FF network processes the result of attention




“Fixing” Self-Attention (3) We can look at these

(not greyed out) words

* For decoders, restrict visibility of
future values [START]

* “manually” computing keys

and queries too inconvenient For encoding
these words
* For parallelization, ) chef

mask out attention to future values

who

T . .
e = 14i ki) <1
Y —00,j > i



We got the building blocks:

o Self-attention:

* recurrence-free (fast!) and spanning the whole sequence
* Position encodings

* re-introduce sequence order to key, query and values
* Masking

* to allow parallel computations while “not looking into the future”



Transformer (Vaswani et al., 2017)

[predictions!]
4
Transformer

Decoder
4

[decoder attends
to encoder states]

t
Transformer

Decoder

[input sequence] [output sequence]




Transformer (Vaswani et al., 2017)
. J

T 1
LTI

1 I

Feed Forward Feed Forward
Neural Network Neural Network

t t
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t t
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https://jalammar.github.io/illustrated-transformer/



Key-Query-Value: visually

Input hi

Embedding

Queries q1

Keys

Values

https://jalammar.github.io/illustrated-transformer/
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Key-Query-Value: the math

e Let X, ..., X, be the input vectors to the Transformer encoder
* Then we introduce (learnable!) matrices K, Q and V to compute

 k; = Kx; where K is the key matrix
« ¢; = Qx; where Q is the key matrix

« v, = Vx; where V is the key matrix



Scaled Dot-Product, Softmax, Sum

Input
Embedding \:D:l:’
o LetXx,,...,xrbe the input vectors Queries o [
to the Transformer encoder Keys T
« Then we introduce (learnable!) Values EEE
matrices K, Q and V to compute Score
Divide by 8 ( Vdy. )
« k; = Kx; where K is the key matrix
Softmax
« ¢; = Ox; where Q is the key matrix softmax .
« v; = Vx; where V is the key matrix - T

https://jalammar.github.io/illustrated-transformer/



Attention — Multi-head attention

ATTENTION HEAD #0 ATTENTION HEAD #1

https://jalammar.github.io/illustrated-transformer/



Attention — Multi-head attention

* Transformers make use of multiple attention heads per transformer block
* Multiple ‘attentive’ views on the same concept

* This leads to multiple learnable, key, query and value projections

* All “heads” have their own, separately calculated attention output

* The attention outputs will be concatenated and then be multiplied with a
shared weight matrix



Attention — Multi-head attention

https://jalammar.github.io/illustrated-transformer/



Attention — Multi-head attention

https://jalammar.github.io/illustrated-transformer/
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ENCODER #2
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Transformer: Animated

Decoding time step<iw2 3456 OUTPUT
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( Linear + Softmax )
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Transformer: Animated

Decoding time step: 1@3 4 56
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What’s special about the Transformer?

* No recurrency (but positional encodings)

* Highly parallelizeable (hey, it’s foremost matrix multiplications)



Summary

 Attention is a great mechanism to (directly) access information from across the whole
sequence

« Helps with VG, for similar reasons like residuals

« Self-attention (where k, g, v are computed from x) is a great way to encode a sequence
without recurrence

* Transformers are a special setup of self-attention, scaled dot product, residuals and
layernorm.

 Transformers are the current state-of-the-art

* ...if you have enough data to train them :-)



