
Korbinian Riedhammer

Session 8: Attention

GSERM- Deep Learning: Fundamentals and Applications

Recurrency reviewed

• RNN/LSTM help with several sequence problems:

• many-to-one: apply linear layer on last output/hidden state

• many-to-many: apply linear layer at each time step

• one-to-many: yes, you can just keep sampling from an RNN :-)

• …how about many-to-many with ?M ≠ N

Today’s Menu

• Neural Machine Translation

• encoder/decoder architecture

• sampling from decoders: beam search

• Attention: a better modeling of context

• Self-Attention: getting rid of recurrence

• Transformer architecture

Neural Machine Translation

• Data: (huge) “parallel corpus”, e.g. European parliament

• Sequence-to-sequence problem, with

• complex dependencies (word order, sex/gender, …)

• m:n relations: phrase translations may have different lengths

• …all trained “end to end” with two RNNs
?this movie is not bad der Film passt schon

encoder RNN decoder RNN

NMT seq2seq Architecture

Figures: Manning et al.,
Stanford cs224n

NMT seq2seq Architecture

• Encoder RNN consumes input and 
produces an overall encoding

• Decoder RNN uses encoding as 
initial hidden state, and generates  
the target sentence

• “end-to-end”: complete task modeled as one large network

• at training time: apply Teacher-Forcing on Decoder outputs

• at test time: use output at as input at t t + 1
Figures: Manning et al.,
Stanford cs224n

Seq2Seq is versatile!

• Summarization: long text short text

• Dialog: previous utterance next utterance

• Parsing: input text parse tree

• Code generation: natural language python

• Speech recognition: spoken word written word 
(“Listen-Attend-Spell”, https://arxiv.org/abs/1508.01211)

→

→

→

→

→

http://www.apple.com/uk

Encoder/Decoder
Training

Figs.: Manning et al., Stanford cs224n

Back-Propagation operates “end-to-end”!

Sampling the Decoder

• Initialize hidden state with last state of encoder

• Use special start and end symbols

• Greedy sampling:

• Use output at time as input to time

• Terminate on observing end token

• …or on exceeding target length

t t + 1

Figures: Manning et al.,
Stanford cs224n

Problems with Greedy Decoding

• Early decisions can “spoil” the best solution

• frequently, the correct token is not ranked 1st

• how to recover from wrong decisions?

Solution: Beam Search Decoding

• Core idea: instead of just going with the current best hypothesis, keep track
of most probable partial results (“hypotheses”)

• Well-studied in AI (path finding) and speech recognition

• The larger the (the “beam size”), the more paths needed be be kept
active…which requires memory and compute time

• When reaching end-symbol, keep exploring others and re-rank at the end
(normalizing for length)

k

k

Pros & Cons NMT

• Better performance then statistical MT , also in terms of

• fluency

• context utilization

• phrase similarities

• Single neural network to train (statMT often complex system combination)

• …thus: less engineering effort

• But: less interpretable (and hard to debug), difficult to control

Impact of seq2seq on MT

http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

Where’s the key issue in NMT (or: seq2seq…)

• “Flagship [deep learning] task” of NLP

• Many innovations pioneered  
in NMT (e.g.: Attention)

Figures: Manning et al.,
Stanford cs224n

!

Enter: Attention

• Bottleneck: single last hidden state is to encode all context

• Core idea: at each step at the decoder, use a direct connection to the
encoder (states) to focus on particular parts of the input sequence

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: visually

Figures: Manning et al., Stanford cs224n

Attention: the math

• inputs, hidden state dimension

• Encoder hidden states:

• Decoder hidden states:

• Attention scores

• Attention distribution:

• Attention output:

• Concatenate

N H

h1, …, hN ∈ ℝH

st ∈ ℝH

et = [sT
t h1, …, sT

t hN] ∈ ℝN

αt = softmax(et) ∈ ℝN

at =
N

∑
i=1

α(i)
t hi ∈ ℝH

[at; st] ∈ ℝ2H

Vanilla dot-product
attention

Benefits of Attention

• Key contribution to NMT performance

• Solves bottleneck: decoder can now “look” at complete sequence

• Helps with VG through residual-like connections

• Provides “explainability”:

• high attention value = high impact to decision

• soft multi-alignment

Figures: Manning et al., Stanford cs224n

Attention is General Purpose DL

• Given a set of vector values and a vector query, attention is a technique to
compute a weighted sum of the values, dependent on the query

• “the query attends to the values”

• weighted sum is a selective summary of the information

• Attention allows to obtain fixed-size representations of arbitrary set of
representations (values) based on some other representation (query)

The many variants of attention…

• Basic dot-product (Bahdanau et al. 2015)

• Multiplicative attention: , where W is learned

• Additive attention:

• …and many others

ei = sTWhi ∈ ℝ

ei = vT tanh(W1hi + W2s) ∈ ℝ

By 2016, the SOTA was

• encode sentences with a bLSTM 
 

• Define some output (sentiment, summary, …) 
 

• Add attention to allow flexible memory/data access
So everything is solved, right?

Issues with RNNs

• Unrolled left-to-right (or vice-versa), ie. context is built-up using linear locality

• Problem: RNNs take O(seq-len) steps for distant word pairs to “interact”
(slow! gradient!)

Figures: Manning et al., Stanford cs224n

If not recurrence, how about attention?

• Recall: Attention treats each word’s representation as a query to access and
incorporate information of a set of values

• previously: decoder attends to encoder

• how about this: values attend to each other within the sequence?

Figures: Manning et al.,
Stanford cs224n

Self-Attention

• Recall: Attention operates on queries, keys and values

• Queries

• Keys

• Values

• Self-attention: q, k and v are drawn from the same source

• …dot product:

q1, …, qT; qi ∈ ℝd

k1, …, kT; ki ∈ ℝd

v1, …, vT; vi ∈ ℝd

Self-Attention as a Building Block

• Self-attention blocks can be  
stacked

• No free lunch :-(

1. no notion of order

2. (only) matrix multiplications,  
all weighted averages…

3. for decoders: prevent looking  
into the future

“Fixing” Self-Attention (1)

• Sequence order

• Introduce position vectors (aka positional encoding)

• Add to original value, key and query vectors (at input layer) 
 

pi ∈ ℝd; i ∈ 1,…, T

“Fixing” Self-Attention (1)
Sources for positional embeddings

•Should allow meaningful distances between embedding vectors

•Vectors follow a specific pattern/ formula

•Sinusoidal pattern

•Sequence number

•Learned

•Left out altogether

•…

“Fixing” Self-Attention (1)
Most common pattern, proposed in Vaswani et al., 2017

•

•

•

•

⃗x = dmodel ⃗x + PE

PE(pos,2i) = sin(pos10000
2i

dmodel)

PE(pos,2i+1) = cos(pos10000
2i

dmodel)

cos(x) = sin(x +
π
2

)

“Fixing” Self-Attention (2)

• Linear combinations…

• add nonlinearity!

• eg. Linear(Relu(Linear .)

“Fixing” Self-Attention (3)

• For decoders, restrict visibility of  
future values

• “manually” computing keys 
and queries too inconvenient

• For parallelization,  
mask out attention to future values

We got the building blocks:

• Self-attention:

• recurrence-free (fast!) and spanning the whole sequence

• Position encodings

• re-introduce sequence order to key, query and values

• Masking

• to allow parallel computations while “not looking into the future”

Transformer (Vaswani et al., 2017)

Transformer (Vaswani et al., 2017)

https://jalammar.github.io/illustrated-transformer/

Key-Query-Value: visually

https://jalammar.github.io/illustrated-transformer/

Key-Query-Value: the math

• Let be the input vectors to the Transformer encoder

• Then we introduce (learnable!) matrices K, Q and V to compute

• where K is the key matrix

• where Q is the key matrix

• where V is the key matrix

x1, …, xT

ki = Kxi

qi = Qxi

vi = Vxi

Scaled Dot-Product, Softmax, Sum

• Let be the input vectors  
to the Transformer encoder

• Then we introduce (learnable!)  
matrices K, Q and V to compute

• where K is the key matrix

• where Q is the key matrix

• where V is the key matrix

x1, …, xT

ki = Kxi

qi = Qxi

vi = Vxi

https://jalammar.github.io/illustrated-transformer/

Attention – Multi-head attention

https://jalammar.github.io/illustrated-transformer/

Attention – Multi-head attention

• Transformers make use of multiple attention heads per transformer block

• Multiple ‘attentive’ views on the same concept

• This leads to multiple learnable, key, query and value projections

• All “heads” have their own, separately calculated attention output

• The attention outputs will be concatenated and then be multiplied with a
shared weight matrix

Attention – Multi-head attention

https://jalammar.github.io/illustrated-transformer/

Attention – Multi-head attention

https://jalammar.github.io/illustrated-transformer/

Residuals and LayerNorm

https://jalammar.github.io/illustrated-transformer/

Decoder

https://jalammar.github.io/illustrated-transformer/

Transformer: Animated

https://jalammar.github.io/illustrated-transformer/

Transformer: Animated

https://jalammar.github.io/illustrated-transformer/

What’s special about the Transformer?

• No recurrency (but positional encodings)

• Highly parallelizeable (hey, it’s foremost matrix multiplications)

• (It can be pretrained and generalizes well)

Summary

• Attention is a great mechanism to (directly) access information from across the whole
sequence

• Helps with VG, for similar reasons like residuals

• Self-attention (where k, q, v are computed from x) is a great way to encode a sequence
without recurrence

• Transformers are a special setup of self-attention, scaled dot product, residuals and
layernorm.

• Transformers are the current state-of-the-art

• …if you have enough data to train them :-)

