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Recurrency reviewed

• RNN/LSTM help with several sequence problems:


• many-to-one: apply linear layer on last output/hidden state


• many-to-many: apply linear layer at each time step


• one-to-many: yes, you can just keep sampling from an RNN :-)


• …how about many-to-many with  ?M ≠ N



Today’s Menu

• Neural Machine Translation


• encoder/decoder architecture


• sampling from decoders: beam search


• Attention: a better modeling of context


• Self-Attention: getting rid of recurrence


• Transformer architecture



Neural Machine Translation

• Data: (huge) “parallel corpus”, e.g. European parliament


• Sequence-to-sequence problem, with 


• complex dependencies (word order, sex/gender, …)


• m:n relations: phrase translations may have different lengths


• …all trained “end to end” with two RNNs
?this movie is not bad der Film passt schon

encoder RNN decoder RNN



NMT seq2seq Architecture

Figures: Manning et al.,  
Stanford cs224n



NMT seq2seq Architecture

• Encoder RNN consumes input and 
produces an overall encoding


• Decoder RNN uses encoding as 
initial hidden state, and generates  
the target sentence


• “end-to-end”: complete task modeled as one large network


• at training time: apply Teacher-Forcing on Decoder outputs


• at test time: use output at  as input at t t + 1
Figures: Manning et al.,  
Stanford cs224n



Seq2Seq is versatile!

• Summarization: long text  short text


• Dialog: previous utterance  next utterance


• Parsing: input text  parse tree


• Code generation: natural language  python


• Speech recognition: spoken word  written word 
(“Listen-Attend-Spell”, https://arxiv.org/abs/1508.01211)
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http://www.apple.com/uk


Encoder/Decoder 
Training

Figs.: Manning et al.,  Stanford cs224n

Back-Propagation operates “end-to-end”!



Sampling the Decoder

• Initialize hidden state with last state of encoder


• Use special start and end symbols


• Greedy sampling:


• Use output at time  as input to time 


• Terminate on observing end token


• …or on exceeding target length

t t + 1

Figures: Manning et al.,  
Stanford cs224n



Problems with Greedy Decoding

• Early decisions can “spoil” the best solution


• frequently, the correct token is not ranked 1st


• how to recover from wrong decisions?



Solution: Beam Search Decoding

• Core idea: instead of just going with the current best hypothesis, keep track 
of  most probable partial results (“hypotheses”)


• Well-studied in AI (path finding) and speech recognition


• The larger the  (the “beam size”), the more paths needed be be kept 
active…which requires memory and compute time


• When reaching end-symbol, keep exploring others and re-rank at the end 
(normalizing for length)

k
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Pros & Cons NMT

• Better performance then statistical MT , also in terms of 


• fluency


• context utilization


• phrase similarities


• Single neural network to train (statMT often complex system combination)


• …thus: less engineering effort


• But: less interpretable (and hard to debug), difficult to control



Impact of seq2seq on MT

http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf



Where’s the key issue in NMT (or: seq2seq…)

• “Flagship [deep learning] task” of NLP


• Many innovations pioneered  
in NMT (e.g.: Attention)

Figures: Manning et al.,  
Stanford cs224n

!



Enter: Attention

• Bottleneck: single last hidden state is to encode all context


• Core idea: at each step at the decoder, use a direct connection to the 
encoder (states) to focus on particular parts of the input sequence



Attention: visually

Figures: Manning et al., Stanford cs224n
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Attention: visually

Figures: Manning et al., Stanford cs224n



Attention: the math

•  inputs, hidden state dimension 


• Encoder hidden states: 


• Decoder hidden states: 


• Attention scores 


• Attention distribution: 


• Attention output: 


• Concatenate 

N H

h1, …, hN ∈ ℝH

st ∈ ℝH

et = [sT
t h1, …, sT

t hN] ∈ ℝN

αt = softmax(et) ∈ ℝN

at =
N

∑
i=1

α(i)
t hi ∈ ℝH

[at; st] ∈ ℝ2H

Vanilla dot-product 
attention



Benefits of Attention

• Key contribution to NMT performance


• Solves bottleneck: decoder can now “look” at complete sequence


• Helps with VG through residual-like connections


• Provides “explainability”: 


• high attention value = high impact to decision


• soft multi-alignment

Figures: Manning et al., Stanford cs224n



Attention is General Purpose DL

• Given a set of vector values and a vector query, attention is a technique to 
compute a weighted sum of the values, dependent on the query


• “the query attends to the values”


• weighted sum is a selective summary of the information


• Attention allows to obtain fixed-size representations of arbitrary set of 
representations (values) based on some other representation (query) 



The many variants of attention…

• Basic dot-product (Bahdanau et al. 2015)


• Multiplicative attention:  , where W is learned


• Additive attention: 


• …and many others

ei = sTWhi ∈ ℝ

ei = vT tanh(W1hi + W2s) ∈ ℝ



By 2016, the SOTA was

• encode sentences with a bLSTM 
 

• Define some output (sentiment, summary, …) 
 

• Add attention to allow flexible memory/data access
So everything is solved, right?



Issues with RNNs

• Unrolled left-to-right (or vice-versa), ie. context is built-up using linear locality


• Problem: RNNs take O(seq-len) steps for distant word pairs to “interact” 
(slow! gradient!)

Figures: Manning et al., Stanford cs224n



If not recurrence, how about attention?

• Recall: Attention treats each word’s representation as a query to access and 
incorporate information of a set of values


• previously: decoder attends to encoder


• how about this: values attend to each other within the sequence?

Figures: Manning et al.,  
Stanford cs224n



Self-Attention

• Recall: Attention operates on queries, keys and values


• Queries 


• Keys 


• Values 


• Self-attention: q, k and v are drawn from the same source


• …dot product:

q1, …, qT; qi ∈ ℝd

k1, …, kT; ki ∈ ℝd

v1, …, vT; vi ∈ ℝd



Self-Attention as a Building Block

• Self-attention blocks can be  
stacked


• No free lunch :-(


1. no notion of order


2. (only) matrix multiplications,  
all weighted averages…


3. for decoders: prevent looking  
into the future



“Fixing” Self-Attention (1)

• Sequence order


• Introduce position vectors (aka positional encoding) 



• Add to original value, key and query vectors (at input layer) 
 

pi ∈ ℝd; i ∈ 1,…, T



“Fixing” Self-Attention (1)
Sources for positional embeddings

•Should allow meaningful distances between embedding vectors


•Vectors follow a specific pattern/ formula


•Sinusoidal pattern


•Sequence number


•Learned


•Left out altogether


•…



“Fixing” Self-Attention (1)
Most common pattern, proposed in Vaswani et al., 2017

• 


• 


• 


•

⃗x = dmodel ⃗x + PE

PE(pos,2i) = sin(pos10000
2i

dmodel)

PE(pos,2i+1) = cos(pos10000
2i

dmodel)

cos(x) = sin(x +
π
2

)



“Fixing” Self-Attention (2)

• Linear combinations…


• add nonlinearity!


• eg. Linear(Relu(Linear .)



“Fixing” Self-Attention (3)

• For decoders, restrict visibility of  
future values


• “manually” computing keys 
and queries too inconvenient


• For parallelization,  
mask out attention to future values



We got the building blocks:

• Self-attention: 


• recurrence-free (fast!) and spanning the whole sequence


• Position encodings


• re-introduce sequence order to key, query and values


• Masking


• to allow parallel computations while “not looking into the future”



Transformer (Vaswani et al., 2017)



Transformer (Vaswani et al., 2017)

https://jalammar.github.io/illustrated-transformer/



Key-Query-Value: visually

https://jalammar.github.io/illustrated-transformer/



Key-Query-Value: the math

• Let  be the input vectors to the Transformer encoder


• Then we introduce (learnable!) matrices K, Q and V to compute


•  where K is the key matrix


•  where Q is the key matrix


•  where V is the key matrix

x1, …, xT

ki = Kxi

qi = Qxi

vi = Vxi



Scaled Dot-Product, Softmax, Sum

• Let  be the input vectors  
to the Transformer encoder


• Then we introduce (learnable!)  
matrices K, Q and V to compute


•  where K is the key matrix


•  where Q is the key matrix


•  where V is the key matrix

x1, …, xT

ki = Kxi

qi = Qxi

vi = Vxi

https://jalammar.github.io/illustrated-transformer/



Attention – Multi-head attention

https://jalammar.github.io/illustrated-transformer/



Attention – Multi-head attention

• Transformers make use of multiple attention heads per transformer block


• Multiple ‘attentive’ views on the same concept


• This leads to multiple learnable, key, query and value projections


• All “heads” have their own, separately calculated attention output


• The attention outputs will be concatenated and then be multiplied with a 
shared weight matrix



Attention – Multi-head attention

https://jalammar.github.io/illustrated-transformer/



Attention – Multi-head attention

https://jalammar.github.io/illustrated-transformer/



Residuals and LayerNorm

https://jalammar.github.io/illustrated-transformer/



Decoder

https://jalammar.github.io/illustrated-transformer/



Transformer: Animated

https://jalammar.github.io/illustrated-transformer/



Transformer: Animated

https://jalammar.github.io/illustrated-transformer/



What’s special about the Transformer?

• No recurrency (but positional encodings)


• Highly parallelizeable (hey, it’s foremost matrix multiplications)


• (It can be pretrained and generalizes well)



Summary

• Attention is a great mechanism to (directly) access information from across the whole 
sequence


• Helps with VG, for similar reasons like residuals


• Self-attention (where k, q, v are computed from x) is a great way to encode a sequence 
without recurrence


• Transformers are a special setup of self-attention, scaled dot product, residuals and 
layernorm.


• Transformers are the current state-of-the-art


• …if you have enough data to train them :-)


