The Evolution of GPT ### ohm ### The Evolution of GPT - Byte Pair Encoding - Generative Pretraining - Multi-task learning - Prompt Engineering - Reinforcement Learning from Human Feedback (RLHF) # Main Issues in Neural Language Modeling - Data - Tokenization - Compute - Benchmarking ### **Data** Rise of openly accessible data sets Wikipedia (~21GB) CommonCrawl (~380<u>TB</u>, 2022) ### ohm ### **Tokenization** - Traditional NLP - word-based using a lexicon - stemming - Big data NLP - character n-grams (cf. fasttext) - Byte Pair Encoding (BPE) # **Byte Pair Encoding** - P. Gage, 1994: A new algorithm for data compressi Volume 12, Issue 2, 1994 - Replace common pairs of bytes by single bytes - In-memory, multi-pass - Modern NLP - adjust for unicode - Sennrich, Haddow and Birch, 2015 (https://arxiv.org/abs/1508.07909) - Note: Same tokenizers used for Whisper! ### Ω hm Throughput - Relative Performance Source: Nvidia 80GiB Memory for large ## Benchmarking - https://gluebenchmark.com/ - General Language Understanding Evaluation - CoLA: Linguistic Acceptability - SST-2: Sentiment - MRPC, QQP: semantic equivalence - STS-B: test similarity - MNLI, RTE: textual entailment - QNLI: is-answer? - WNLI: entailment after reference substitution ### **Generative Pre-Trained Transformers** - Prior work focused on learning models for specific tasks (sentiment, entailment, etc.) – they didn't generalize well! - Better: <u>semi-supervised</u> learning (and some tricks) - 1. Unsupervised Language Modelling ("pre-training") - 2. Supervised fine-tuning - 3. Task-specific input transformations ## **GPT: LM pre-training** - Train an auto-regressive transformer (decoder) language model - Using BPE, token & positional embedding - ...on large (!) quantities of text! sequence of tokens Itext Williaow Size # **GPT: Supervised Fine-Tuning** - Assemble a dataset $\mathscr C$ with sequences $\mathbf x$ and according labels y - (Super)GLUE gives us a rich set of tasks and datasets! - Add linear output layer to final transformer block label of this sequence Optionally, for better performance and convergence: $L_3 = L_2(\mathscr{C}) + \lambda L_1(\mathscr{C})$ ## **GPT: Task-specific input transformations** - For supervised training, we need to rearrange the input so that it works with our architecture - Start and end tokens for input sequences - Delimiter tokens in between parts of input - Textual entailment: introduce '\$' token in between premise and hypothesis - Similarity: provide pairs in both orders - QA/Reasoning: [document; question; \$; answer] ### **GPT: Architecture at a Glance** ### **GPT: Some More Details** - Dataset: BooksCorpus (~7000 unpublished books) - BPE with 40,000 merges - Context token size (!= words): 512 - 12 decoder blocks with 12 attention heads (each) nota bene: not words! | | GPT (2018) | |--------------------|--------------------| | Data | BooksCorpus (~5GB) | | BPE | 40,000 | | Parameters | 117 Million | | Decoder Layers | 12 | | Context Token Size | 512 | | Hidden Layer | 768 | | Batch Size | 64 | ## Results from the original tech report Table 4: Semantic similarity and classification results, comparing our model with current state-of-theart methods. All task evaluations in this table were done using the GLUE benchmark. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation) | Method | Classif | ication | on Semantic Similarity | | | GLUE | |---------------------------------------|-----------|------------|------------------------|-----------|-------------|------| | | CoLA (mc) | SST2 (acc) | MRPC
(F1) | STSB (pc) | QQP
(F1) | | | Sparse byte mLSTM [16] | Mo atill | 93.2 | - | - | - | - | | TF-KLD [23] 2018: Hey, LST around! | | _ | 86.0 | - | - | - | | ECNU (mixed ensemble) | | - | - | | | | | Single-task BiLSTM + ELMo + Attn [64] | 35.0 | 90.2 | 80.2 | 6/202 | 23: 91% | 63 | | Multi-task BiLSTM + ELMo + Attn [64] | 18.9 | 91.6 | 83.5 | Die | | 08.9 | | Finetuned Transformer LM (ours) | 45.4 | 91.3 | 82.3 | 82.0 | 70.3 | 72.8 | ### GPT-2 - Basically like GPT, just bigger - Larger context, more parameters - More data: WebText (40GB human curated, by tracing reddit outbound) - Better BPE (prevent split across character categories), 50k - Paving the way to zero shot learning - Introduced task conditioning (ie. same input but different output depending on task) - Instead of separators, use natural language instructions guten tag = good morning guten abend = < sample... > ### ohm ### **GPT-2: Zero Shot Learning** - Technically, no training or fine-tuning allowed - Model is "primed" with training data, e.g. - "guten tag = good morning" ... - At last, sample from model to get answer, e.g. - "guten abend = ..." ### **GPT-2: some more details** | | GPT (2018) | GPT-2 (2019) | |--------------------|-------------------|----------------| | Data | BooksCorpus (5GB) | WebText (40GB) | | BPE | 40k | 50k (tweaked) | | Parameters | 117 Million | 1.5 Billion | | Decoder Layers | 12 | 48 | | Context Token Size | 512 | 1024 | | Hidden Layer | 768 | 1600 | | Batch Size | 64 | 512 | **GPT** # Results from the original tech rep These are all rather simple "fill the gap" tests | | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwik8 | text8 | WikiText103 | 1BW | |-------------------------------|---------------------------------|--|--------|------------------|-----------|-------|--------|------------------------------|---|-----------------------------------| | | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | SOTA | 99.8 | 59.23 | | | | | | 1.08 | 18.3 | 21.8 | | 117M
345M
762M
1542M | 35.13
15.60
10.87
8.63 | 45.99
55.48
60.12
63.24 | Ok, we | get it: k | oigger is | bette | er! | 1.17
1.06
1.02
0.98 | 37.50
26.37
22.05
17.48 | 75.20
55.72
44.575
42.16 | Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2 results are from (Got et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018) and LAMBADA perple ity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019). GPT-2 ## Results from the original tech report (2) *Table 4.* Summarization performance as measured by ROUGE F1 metrics on the CNN and Daily Mail dataset. Bottom-Up Sum is the SOTA model from (Gehrmann et al., 2018) Still, pretty terrible dataset ### GPT-3 - **Vision**: Build a general model ("foundation model") that will learn any task with only a few examples ("few shot learner") - More of everything... | | GPT (2018) | GPT-2 | GPT-3 | |--------------------|-------------------|-----------------|----------------------| | Data | BooksCorpus (5GB) | +WebText (40GB) | +CommonCrawl+Wiki_en | | Parameters | 117 Million | 1.5 Billion | 175 Billion | | Decoder Layers | 12 | 48 | 96 | | Context Token Size | 512 | 1024 | 2048 | | Hidden Layer | 768 | 1600 | 12288 | | Batch Size | 64 | 512 | 3.2M | ### GPT-3 - "in-context learning": - prepend examples of the task before your actual example/query - k = 0: zero-shot - k = 1: one-shot - k > 1: few-shot - ...but still no gradient update! ### ohm GPT-3: Few-Shot Learning on SuperGLUE In Contact Learning on SuperGLUE Translate English to French: peppermint => menthe povrée sea otter => loutre de mer ... cheese => ### **One-Shot** Translate English to French: sea otter => loutre de mer cheese => ### **Zero-Shot** Translate English to French: cheese => ### **GPT-3: Results from the original paper** | | SuperGLUE
Average | E BoolQ
Accuracy | CB Accuracy | CB
y F1 | COPA
Accuracy | RTE
Accuracy | |--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Fine-tuned SOTA Fine-tuned BERT-Large | 89.0 69.0 | 91.0 77.4 | 96.9
83.6 | 93.9 75.7 | 94.8 70.6 | 92.5 71.7 | | GPT-3 Few-Shot | 71.8 | 76.4 | 75.6 | 52.0 | 92.0 | 69.0 | | | WiC
Accuracy | WSC
Accuracy | MultiRC
Accuracy | MultiRC
F1a | ReCoRD
Accuracy | ReCoRD
F1 | | Fine-tuned SOTA Fine-tuned BERT-Large GPT-3 Few-Shot | 76.1 69.6 49.4 | 93.8 64.6 80.1 | 62.3 24.1 30.5 | 88.2 70.0 75.4 | 92.5 71.3 90.2 | 93.3 72.0 91.1 | **Table 3.5:** Performance of GPT-3 on SuperGLUE compared to fine-tuned baselines and SOTA. All results are reported on the test set. GPT-3 few-shot is given a total of 32 examples within the context of each task and performs no gradient updates. ## **Chain-of-Thought Prompting** - In-context learning seems to have limited performance - Solution: Change the prompts! #### Standard Prompting #### **Model Input** Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? A: The answer is 11. Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have? #### **Chain-of-Thought Prompting** #### **Model Input** Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11. Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have? #### **Model Output** A: The answer is 27. #### **Model Output** A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. 🗸 # **Chain-of-Thought Prompting** Standard prompting Chain-of-thought prompting Prior supervised best - Yes, it works! - But... As for limitations, we first qualify that although chain of thought emulates the thought processes of human reasoners, this does not answer whether the neural network is actually "reasoning," which we leave as an open question. Second, although the cost of manually augmenting exemplars with chains of thought is minimal in the few-shot setting, such annotation costs could be prohibitive for finetuning (though this could potentially be surmounted with synthetic data generation, or zero-shot generalization). Third, there is no guarantee of correct reasoning paths, which can lead to both correct and incorrect answers; improving factual generations of language models is an open direction for ## **Zero-Shot Chain-of-Thought** ## Zero-Shot Chain-of-Thought (on MultiArith dataset) | No. | Category | Template | Accuracy | |-----|-------------|---|----------| | 1 | instructive | Let's think step by step. | 78.7 | | 2 | | First (*1) | 77.3 | | 3 | | "Prompt Engineering" | 74.5 | | 4 | | "Prompt Engineering" g it into steps. (*2) | 72.2 | | 5 | | Les step by step. | 70.8 | | 6 | | Let's think like a detective step by step. | 70.3 | | 7 | | Let's think | 57.5 | | 8 | | Before we dive into the answer, | 55.7 | | 9 | | The answer is after the proof. | 45.7 | | 10 | misleading | Don't think. Just feel. | 18.8 | | 11 | | Let's think step by step but reach an incorrect answer. | 18.7 | | 12 | | Let's count the number of "a" in the question. | 16.7 | | 13 | | By using the fact that the earth is round, | 9.3 | | 14 | irrelevant | By the way, I found a good restaurant nearby. | 17.5 | | 15 | | Abrakadabra! | 15.5 | | 16 | | It's a beautiful day. | 13.1 | | - | | (Zero-shot) | 17.7 | # **Language Modeling ≠ Assisting Users** Prompt Explain the moon landing to a 6 year old in a few sentences. Completion GPT-3 Explain the theory of gravity to a 6 year old. Explain the theory of relativity to a 6 year old in a few sentences. Explain the big bang theory to a 6 year old. Explain evolution to a 6 year old. LMs are not aligned with user intent! # **Instruction Fine-Tuning (1)** Collect examples of (instruction, output) pairs across many tasks and fine-tune ### $oldsymbol{o}hm$ # **Instruction Fine-Tuning (2)** Evaluate on unseen task Instruction finetuning Please answer the following question. What is the boiling point of Nitrogen? Chain-of-thought finetuning Answer the following question by reasoning step-by-step. The cafeteria had 23 apples. If they used 20 for lunch and bought 6 more, how many apples do they have? Multi-task instruction finetuning (1.8K tasks) Inference: generalization to unseen tasks Q: Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering. FLAN-T5 SNI + 1.8k tasks -320.4F The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. Language model Geoffrey Hinton is a British-Canadian computer scientist born in 1947. George Washington died in 1799. Thus, they could not have had a conversation together. So the answer is "no". ## **Limits of Instruction Fine-Tuning (FLAN)** - Ground-truth data is expensive to collect - Open-ended (creative) tasks do not have a right answer - "Write a poem about deep learning" - Language Modeling penalizes all token-level mistakes equally but some errors are worse than others! - "You're fired" vs. "You're hired"! ### ohm ### From LMs to Assistants: Recap - Zero-shot and few-shot in-context learning - No fine-tuning needed - prompt engineering can improve performance - Limits to what you can fit in context - Complex tasks will probably need parameter update - Instruction fine-tuning - Simple and straight-forward, generalizes to unseen tasks - Collecting ground-truth for many tasks is expensive (and exhaustive...) Mismatch between LM object and human preference ### **Optimizing for Human Preference** - Let's say, we're training for summarization - Remember: We can sample multiple outputs! SAN FRANCISCO, California (CNN) -A magnitude 4.2 earthquake shook the San Francisco ... overturn unstable objects. An earthquake hit San Francisco. There was minor property damage, but no injuries. The Bay Area has good weather but is prone to earthquakes and wildfires. ## **Optimizing for Human Preference** - Which one is better, or: which one has a higher reward? - Mathematical framework: policy gradient for reinforcement learning Reinforcement Learning from Human Feedback (RLHF) ## A Model of Human Preference (1) - Problem: human-in-the-loop is costly (and slow) - Solution: Model human preference as a separate (NLP) task 🤓 A 4.2 magnitude earthquake hit San Francisco, resulting in massive damage. # A Model of Human Preference (2) - Problem: humans don't agree and are often miscalibrated - **Solution**: ask for pair-wise comparison (binary preference) An earthquake hit San Francisco. There was minor property damage, but no injuries. The Bay Area has good weather but is prone to earthquakes and wildfires. ### ohm InstructGPT Step 1 30k tasks! Collect demonstration data, and train a supervised policy. A prompt is sampled from our prompt dataset. A labeler demonstrates the desired output behavior. This data is used to fine-tune GPT-3 with supervised learning. Step 2 Collect comparison data, and train a reward model. A prompt and several model outputs are sampled. A labeler ranks the outputs from best to worst. This data is used to train our reward model. D > G > A = B The reward model calculates a reward for the output. The reward is used to update the policy using PPO. Step 3 Optimize a policy against the reward model using reinforcement learning. A new prompt is sampled from the dataset. The policy generates an output. Ouyang et al., 2022: Training LMs to follow instructions with human feedback ### **ChatGPT** - OpenAI not so open anymore... details not really revealed - Blog post suggests: - GPT-3.5 (bigger, you guessed it...) - Instruction fine-tuning - RLHF - ...on dialog data - Unclear: How much "plain" (handcrafted, rule-based) engineering is - in the dialog state? - in the "last mile"? (e.g. for SQL queries, API calls) ### $oldsymbol{o}hm$ ## A Note on RL with Reward Modeling - Human preference is unreliable (and subject to change...) - "Reward hacking" is an issue in RL - Chatbots are rewarded to produce responses that seem authoritative and helpful, regardless of truth - Possible root cause of "alternative facts" and hallucinations - Models of human preference will by design be inferior 🥺 RL from human feedback seems to be the main tool for alignment. Given reward hacking and the falliability of humans, this strategy seems bound to produce agents that merely appear to be aligned, but are bad/wrong in subtle, inconspicuous ways. Is anyone else worried about this? # OpenAl is hiring developers to make ChatGPT better at coding Developers aim to create lines of code and explanations of it in natural language, according to Semafor. ### ohm ### Recap - GPT - Generative pre-trained transformers for language modelling - Fine-tuned to (multitude of) tasks - "bigger is better" - Prompt engineering (zero-/one-/few-shot) - Instruction fine-tuning - Reinforcement Learning from Human Feedback