

Reinforcement Learning

Reinforcement Learning

- Introduction
- Markov Decision Process
- Return, Policy, Value (state value, state-action value)
- RL Categories (model based/free, prediction/control)
- Q Learning
 - Q-Table
 - DQN

Introduction

• Tic-Tac-Toe: a sequences of decisions

X		
	0	

X		X
	0	

X	0	X
	0	

t

What's the winning strategy?

Related Tasks

- Robotics:
 - driving
 - limb movement
 - grabbing
- Gaming:
 - Atari
 - Tetris
 - chess
 - Go
 - ... StarCraft :-)

Different Paradigms

supervised learning

reinforcement learning

RL vs. Supervised Learning

- No labels to compute loss (instead: reward)
- (Typically) No large pre-recorded dataset but interaction with environment
- Sequence of decisions, incorporating the changing environment

Ω hm

Basic Principle

- Learn through trial and error (much like an infant...)
 - Try some action
 - Receive some feedback/reward from the environment
 - Repeat process until converging to positive results :-)

Key Concepts

- Agent: the system that we try to learn
- Environment: the real-world environment that the agent operates in
- **State**: representation of the current state of the environment. This could be a finite set or in infinite space
- Action: set of actions that the agent can perform to alter the environment
- Reward: positive or negative reinforcement following the action

$oldsymbol{o}hm$

Example: Tic Tac Toe

- Agent?
- Environment/State?
- Actions?
- Reward?

https://towardsdatascience.com/reinforcement-learning-made-simple-part-1-intro-to-basic-concepts-and-terminology-1d2a87aa060

https://towardsdatascience.com/reinforcement-learning-made-simple-part-1-intro-to-basic-concepts-and-terminology-1d2a87aa060

11

Markov Decision Process: Visually

ρhm

Agent and Environment

Recap: Markov Decision Processes

- The environment is represented as a Markov decision process (MDP) \mathcal{M} .
- Markov assumption: all relevant information is encapsulated in the current state
- Components of an MDP:
 - initial state distribution $p(\mathbf{s}_0)$
 - transition distribution $p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$
 - reward function $r(\mathbf{s}_t, \mathbf{a}_t)$
- policy $\pi_{\theta}(\mathbf{a}_t \,|\, \mathbf{s}_t)$ parameterized by θ
- Assume a fully observable environment, i.e. \mathbf{s}_t can be observed directly

Key Concepts: Return

Finite and Infinite Horizon

- assume infinite horizon
 - We can't sum infinitely many rewards, so we need to discount them: \$100 a year from now is worth less than \$100 today
 - Discounted return

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

- Want to choose an action to maximize expected discounted return
- ullet The parameter $\gamma < 1$ is called the discount factor
 - small $\gamma = \text{myopic}$
 - large $\gamma = \text{farsighted}$

Key Concept: Policy

- How does the agent decide which action to take?
- Examples
 - Always pick random action
 - Always pick action to reach the next state with highest reward
 - Avoid negative reward
- If states and actions are finite: look-up table

Probability of taking Action a₃

Key Concept: Value

- Expected return following a certain policy
- State Value vs. State-Action Value

 $Q(S_3,a_3)$ ie. Expected Return by taking Action a_3 from State S_3 and following Policy π after that

Value Function

• Value function $V^{\pi}(\mathbf{s})$ of a state \mathbf{s} under policy π : the expected discounted return if we start in \mathbf{s} and follow π

$$egin{aligned} V^{\pi}(\mathbf{s}) &= \mathbb{E}[G_t \, | \, \mathbf{s}_t = \mathbf{s}] \ &= \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^i r_{t+i} \, | \, \mathbf{s}_t = \mathbf{s}
ight] \end{aligned}$$

- Computing the value function is generally impractical, but we can try to approximate (learn) it
- The benefit is credit assignment: see directly how an action affects future returns rather than wait for rollouts

Value Function

- Rewards: -1 per time step
- Undiscounted $(\gamma = 1)$
- Actions: N, E, S, W
- State: current location

8 / 22

Value Function

Roger Grosse and Jimmy Ba

9 / 22

Action-Value Function

• Can we use a value function to choose actions?

$$\arg\max_{\mathbf{a}} r(\mathbf{s}_t, \mathbf{a}) + \gamma \mathbb{E}_{p(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t)}[V^{\pi}(\mathbf{s}_{t+1})]$$

- Problem: this requires taking the expectation with respect to the environment's dynamics, which we don't have direct access to!
- Instead learn an action-value function, or Q-function: expected returns if you take action **a** and then follow your policy

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}[G_t \,|\, \mathbf{s}_t = \mathbf{s}, \mathbf{a}_t = \mathbf{a}]$$

Relationship:

$$V^{\pi}(\mathbf{s}) = \sum_{\mathbf{a}} \pi(\mathbf{a} \mid \mathbf{s}) Q^{\pi}(\mathbf{s}, \mathbf{a})$$

Optimal action:

$$\underset{\mathbf{a}}{\operatorname{arg max}} Q^{\pi}(\mathbf{s}, \mathbf{a})$$

Relationship Reward, Return and Value

- Reward is the immediate reward obtained for a single action.
- Return is the total of all the discounted rewards obtained till the end of that episode.
- Value is the expected return over many episodes

Bellman Equation

• The Bellman Equation is a recursive formula for the action-value function:

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{p(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \, \pi(\mathbf{a}' \mid \mathbf{s}')}[Q^{\pi}(\mathbf{s}', \mathbf{a}')]$$

• There are various Bellman equations, and most RL algorithms are based on repeatedly applying one of them.

Optimal Bellman Equation

- The optimal policy π^* is the one that maximizes the expected discounted return, and the optimal action-value function Q^* is the action-value function for π^* .
- The Optimal Bellman Equation gives a recursive formula for Q^* :

$$Q^*(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{p(\mathbf{s}' \mid \mathbf{s}, \mathbf{a})} \left[\max_{\mathbf{a}'} Q^*(\mathbf{s}_{t+1}, \mathbf{a}') \, | \, \mathbf{s}_t = \mathbf{s}, \mathbf{a}_t = \mathbf{a} \right]$$

• This system of equations characterizes the optimal action-value function. So maybe we can approximate Q^* by trying to solve the optimal Bellman equation!

Q-Learning

- Let Q be an action-value function which hopefully approximates Q^* .
- The Bellman error is the update to our expected return when we observe the next state s'.

$$r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \max_{\mathbf{a}} Q(\mathbf{s}_{t+1}, \mathbf{a}) - Q(\mathbf{s}_t, \mathbf{a}_t)$$
inside \mathbb{E} in RHS of Bellman eqn

- The Bellman equation says the Bellman error is 0 in expectation
- ullet Q-learning is an algorithm that repeatedly adjusts Q to minimize the Bellman error
- Each time we sample consecutive states and actions $(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1})$:

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha \underbrace{\left[r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \max_{\mathbf{a}} Q(\mathbf{s}_{t+1}, \mathbf{a}) - Q(\mathbf{s}_t, \mathbf{a}_t)\right]}_{\text{Bellman error}}$$

Exploration-Exploitation Tradeoff

- Notice: Q-learning only learns about the states and actions it visits.
- Exploration-exploitation tradeoff: the agent should sometimes pick suboptimal actions in order to visit new states and actions.
- Simple solution: ϵ -greedy policy
 - With probability $1-\epsilon$, choose the optimal action according to Q
 - With probability ϵ , choose a random action
- Believe it or not, ϵ -greedy is still used today!

Exploration-Exploitation Tradeoff

- ullet Q-learning is an off-policy algorithm: the agent can learn Q regardless of whether it's actually following the optimal policy
- Hence, Q-learning is typically done with an ϵ -greedy policy, or some other policy that encourages exploration.

Q-Learning

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
        Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
        Take action A, observe R, S'
   Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
   S \leftarrow S';
   until S is terminal
```

omega

Q Learning Visually

$oldsymbol{o}hm$

Q-Learning Visually

	a1	a2	a3	a4
S1	4	9	2	3
S2	0	3	4	7

Q-Learning Visually

$oldsymbol{o}hm$

Q-Learning Visually

$oldsymbol{o}hm$

Q-Learning: Duality of Current and Target Action

Q-Learning

- Initialize Q-Table with zeros
- Reward will "populate" the Q-Table (and propagate...)
- but....
 - Q-Table may become very large
 - States may not be enumerable (ie. discrete)

Deep Q Networks (DQN)

Recall Bellman's update rule

$$Q(s,a) = r(s,a) + \gamma \max_{a} Q(s',a)$$

- Replace Q-Table with function approximation (ie. a neural net)
- Idea: We're looking for an approximation where the above equation is true

$$Cost = \left[Q(s, a; \theta) - \left(r(s, a) + \gamma \max_{a} Q(s', a; \theta)\right)\right]^{2}$$

DQN: Modeling Choices (1)

- Technically, our DQN should map (state, action) → Q value
- Would require separate inference for each action
- Instead: Predict Q value for all actions at the output layer

Train using backpropagation

DQN: Modeling Choices (2)

- Mnih et al., 2013: DQN
 - CNN applied to 5 consecutive frames (downsampled to 84x84) to model state
 - 4-18 output values (one Q for each valid action)
 - experience replay buffer: cache $e_t = (s_t, a_t, r_t, s_{t+1})$ for efficient minibatch
 - Q/Q-Target networks, ie. keep target network constant

Summary

- Reinforcement learning learns from sequences of actions and their reward
- Underlying theory
 - Markov Decision Process (MDP)
 - Bellman's equation
- Regular Q-Learning (Q-Table) requires coding of states and actions
- Deep Q-Learning (DQN) allows to use encoding layers (eg. CNN for images) to model state
- Experience replay helps to speed up minibatch training