Reinforcement Learning

Technische Hochschule Niirnberg Georg Simon Ohm

ohm

Reinforcement Learning

* |Introduction

Markov Decision Process
Return, Policy, Value (state value, state-action value)
RL Categories (model based/free, prediction/control)

Q Learning
« Q-Table
« DQN

Technische Hochschule Niirnberg Georg Simon Ohm

ohm

Introduction

* Tic-Tac-Toe: a sequences of decisions

 What's the winning strategy?

Technische Hochschule Niirnberg Georg Simon Ohm

ohm

Related Tasks

* Robotics:
 driving
* [imb movement
« grabbing
« Gaming:
o Atari
* Tetris
* chess
* Go
e ... StarCraft :-)

Technische Hochschule Niirnberg Georg Simon Ohm

ohm

Different Paradigms

supervised learning reinforcement learning

features (states, actions)

, Model (Reward). Model
labels l_ prediction \ action

Technische Hochschule Niirnberg Georg Simon Ohm

ohm

RL vs. Supervised Learning

* No labels to compute loss (instead: reward)
* (Typically) No large pre-recorded dataset but interaction with environment
« Sequence of decisions, incorporating the changing environment

Technische Hochschule Niirnberg Georg Simon Ohm

ohm

Basic Principle

* Learn through trial and error (much like an infant...)

 Try some action
* Receive some feedback/reward from the environment
* Repeat process until converging to positive results :-)

/ Agent \
reward r state s action a ﬁggﬂfﬁ
state s’
T GUESS T
_ SHOULDNT DO THAT
anronment) 3

https://xkcd.com/242/

SCIENTIST

I WONDER |F
THAT HAPPENS EVERY

Technische Hochschule Niirnberg Georg Simon Ohm

ohm

Key Concepts

« Agent: the system that we try to learn
 Environment: the real-world environment that the agent operates in

« State: representation of the current state of the environment. This could be a
finite set or in infinite space

« Action: set of actions that the agent can perform to alter the environment
 Reward: positive or negative reinforcement following the action

Technische Hochschule Niirnberg Georg Simon Ohm

ohm

Example: Tic Tac Toe

 Agent?

* Environment/State?
* Actions?
 Reward?

Technische Hochschule Niirnberg Georg Simon Ohm

Agent decides
action to take

Initial State

—

©

Agent for the next
iteration

&
1

Action Is passed fo
the Environment

@ Gets input to the
+0

@1'pts

Environment outputs
Next State and
Reward

https://towardsdatascience.com/reinforcement-learning-made-simple-part-1-

Technische Hochschule Niirnberg Georg Simon Ohm . . .
& g intro-to-basic-concepts-and-terminology-1d2a87aa060

10

https://towardsdatascience.com/reinforcement-learning-made-simple-part-1-

intro-to-basic-concepts-and-terminology-1d2a87aa060

ohm

: Visually

Process

1ISION

Markov Dec

|||||||||||

e 11111

States

-est= N>

"

Episode

Technische Hochschule Niirnberg

ohm
Agent and Environment

Decided by Agent <

Decided by Env <

https://towardsdatascience.com/reinforcement-learning-made-simple-part-1- 12

Technische Hochschule Niirnberg Georg Simon Ohm . . .
intro-to-basic-concepts-and-terminology-1d2a87aa060

Recap: Markov Decision Processes

@ The environment is represented as a Markov decision process (MDP)
M.

@ Markov assumption: all relevant information is encapsulated in the
current state

@ Components of an MDP:

e initial state distribution p(sg)
e transition distribution p(s;y1|s¢,a:)
o reward function r(s;, a;)

@ policy mg(at | s¢) parameterized by 6

@ Assume a fully observable environment, i.e. s; can be observed directly

13
Technische Hochschu

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 5/22

ohm

Key Concepts: Return

» Total reward over all time steps

Reward /

received ---._
A ry

Vs

2

of

Technische Hochschule Niirnberg Georg Simon Ohm

Vs

o

14

Finite and Infinite Horizon

@ assume infinite horizon

e We can't sum infinitely many rewards, so we need to discount them:
$100 a year from now is worth less than $100 today
e Discounted return

Gy = re +yreq1 ‘|'72rt+2 + -

e Want to choose an action to maximize expected discounted return
e The parameter v < 1 is called the discount factor

@ small v = myopic

o large v = farsighted

15
Technische Hochschu

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 6 /22

ohm

Key Concept: Policy

Policy
 How does the agent decide which action to take? __--___(.S_T_Z)Cﬂons g
 Examples . L | -
« Always pick random action A
* Always pick action to reach the next state @ [(a]5)
with highest reward T
 Avoid negative reward =
’ § & |- w(ag,]sg)‘\
* |f states and actions are finite: look-up table E :
&

Probability of taking Action as
when in State S 16

Technische Hochschule Niirnberg Georg Simon Ohm

ohm

Key Concept: Value

State-Action Value
. . . S
« Expected return following a certain policy niair
U T RN Actions - - - - - - - >
« State Value vs. State-Action Value
Ch| a a3
State(;/)alue ‘:A
! o | Q1 Q12 Q13
Value E
A ; o | Qo1 Q22 Q23
A Y :
. %’ o | Q3 Q32 | Q33 .
3 v Y. bl @ | Q| Qe | Qs
» | V4 3
Q(S3, a3)ie. Ezpected Return by taking
V(8s)ie. Ezpected Return Action ag from State S3 and
Jrom Statd Sy by following Policy w after that

Technische Hochschule Niirnberg Georg Simon Ohm following Policy

Value Function

@ Value function V™(s) of a state s under policy 7: the expected
discounted return if we start in s and follow 7

V7™ (s) = E[G; |s: =]

=F E Y reii|st =s
i=0

@ Computing the value function is generally impractical, but we can try
to approximate (learn) it

@ The benefit is credit assignment: see directly how an action affects
future returns rather than wait for rollouts

18
Technische Hochschu

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 7/22

Value Function

Start

@ Rewards: -1 per time step
o Undiscounted (v = 1)

@ Actions: N, E, S, W

@ State: current location

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21:

Technische Hochschu

Q-Learning

Goal

8 /22

19

Technische Hochschu

Value Function

Roger Grosse and Jimmy Ba

Start

CSC421/2516 Lecture 21:

Q-Learning

9/22

20

Technische Hochschu

Action-Value Function

@ Can we use a value function to choose actions?

arg maaX r(st7 a) _|_ nyP(SH—l |St,at)[v7r(st+1)]

@ Problem: this requires taking the expectation with respect to the
environment’s dynamics, which we don't have direct access to!

@ Instead learn an action-value function, or Q-function: expected
returns if you take action a and then follow your policy

Q"(s,a) = E[G;|s: =s,a; = a]

@ Relationship:

V7(s) =) w(als)Q7(s,a)

a
@ Optimal action:
arg max Q" (s, a)
a

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning

10/22

21

ohm

Relationship Reward, Return and Value

 Reward is the immediate reward obtained for a single action.
* Return is the total of all the discounted rewards obtained till the end of that

episode.
* Value is the expected return over many episodes

Technische Hochschule Niirnberg Georg Simon Ohm

22

Technische Hochschu

Bellman Equation

@ The Bellman Equation is a recursive formula for the action-value
function:

Qw(sa a) — I’(S, a) + /VEp(s’ |s,a) w(a’ | s’)[Qﬁ(s/v a/)]

@ There are various Bellman equations, and most RL algorithms are
based on repeatedly applying one of them.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning

11/22

23

Technische Hochschu

- |
Optimal Bellman Equation

@ The optimal policy m* is the one that maximizes the expected
discounted return, and the optimal action-value function Q* is the
action-value function for 7*.

@ The Optimal Bellman Equation gives a recursive formula for Q*:
Q(s,a) = r(s,a) + 1Ep(s |s.a) | Max Q7(St41,@') [t = 5,8 =

@ This system of equations characterizes the optimal action-value
function. So maybe we can approximate Q@* by trying to solve the
optimal Bellman equation!

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning

12/22

24

Technische Hochschu

.|
Q-Learning

@ Let @ be an action-value function which hopefully approximates Q.

@ The Bellman error is the update to our expected return when we
observe the next state s'.

r(st7 at) =+ Y maaX Q(st—|—17 a) o Q(st7 at)

\ 4

inside E in RHS of Bellman eqn

@ The Bellman equation says the Bellman error is 0 in expectation

@ Q-learning is an algorithm that repeatedly adjusts @ to minimize the
Bellman error

@ Each time we sample consecutive states and actions (s¢, a¢, St+1):

Q(sta at) — Q(st7 at) + « [I’(St, at) + 7Y maaX Q(St—|—17 a) T Q(St7 at)

N\ 4
V.

Bellman error

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 13 /22

25

- |
Exploration-Exploitation Tradeoff

@ Notice: Q-learning only learns about the states and actions it visits.

@ Exploration-exploitation tradeoff: the agent should sometimes pick
suboptimal actions in order to visit new states and actions.
@ Simple solution: e-greedy policy
e With probability 1 — ¢, choose the optimal action according to @
e With probability €, choose a random action

@ Believe it or not, e-greedy is still used today!

26

Technische Hochschu

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 14 /22

Technische Hochschu

- |
Exploration-Exploitation Tradeoff

@ Q-learning is an off-policy algorithm: the agent can learn Q) regardless of
whether it's actually following the optimal policy

e Hence, Q-learning is typically done with an e-greedy policy, or some
other policy that encourages exploration.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 15 /22

27

Technische Hochschu

]
Q-Learning

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S, 4) « Q(S, 4) +a[R + ymax, Q(5', a) - Q(S, A)]
S+ S’

until S is terminal

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning

16 /22

28

ohm

Q Learning Visually

Technische Hocl

@

Initialise Q-Value (ie. State Action value) estimates with zero
value, and pick the initial state.

&R 882
S| O o O ©

S o*o—g‘

O] O O O O

o O O O ©

&)

v

+ Initial state

Next state becomes
the Current State

®'®

Agent picks an action to execute from the current state
using e-greedy policy.

Agent obtains observation data from the environment
(S1,a1, R1, S2)

™

()~ @-F1(s2)
at
Update the current Q-value using the observed
reward and the target Q-value. The target Q-value is

the action with the max Q-value from the next state.

Q(S,A) = Q(S, A) + a(R +ymaz Q(S',a) - Q(S, A))

. I. R1|.
@ Q1Q4
1

o1 iq 29

ohm

Q-Learning Visually
------------------- Current state
X "”’_‘ 5 ‘\“\\‘ \\
Current action picked using an @
e-greedy policy.
<
a1 a3 a4
- R e
ol |9 2 8 R1=2
| —
$2 0 3 4 |7 @

Technische Hochschule Niirnberg Georg Simon Ohm

ohm

Q-Learning Visually

Technische Hochschule Ni

-

- - - T me. i
- -
- -~ -

- -
- - -

The target ac’tion IS the action
from the next state with the
highest Q-value

31

ohm

Q-Learning Visually

Current state

’ ~
~

-
— - -
- -

rent Q-value is updated

7/
~
~
Y
N
N
\
N\
N\
\
-
®
K
/
/
/

Q(S,A4) = Q(S,A4) + a(R +ymaz Q(S5',a) — Q(S, 4))
Q1=Q1+a(R1+y*Q4-Q1)

Q1=4+(2+7-4)=9

NB: taking a = y = 1 for simplicity

a’
Q2=3

32
Technische Hochschule Ni

ohm

Q-Learning Visually

- Wy GRS .y
- - -

/,// The current ‘ Jalde 'S Updated
’/
ppamnrs e . al a2 a3 ;64
ad 0 9 |

....... - $1 lzi } o P B
Q4=7 | | |
S2 0 3 4 :7

33
Technische Hochschule |

ohm
Q-Learning: Duality of Current and Target Action

Current state

e e ™
- -~ -

Since we use g-greedy we can
explore while picking the current

- .
- -
- -~

We always use the target action with
the highest Q-value to update our

estimates. However, in the next time
step, we may not execute this action at

Technische Hochsct a”

34

ohm

Q-Learning

* |nitialize Q-Table with zeros

 Reward will “populate” the Q-Table (and propagate...)
* but...

* Q-Table may become very large
« States may not be enumerable (ie. discrete)

Technische Hochschule Niirnberg Georg Simon Ohm

35

ohm

Deep Q Networks (DQN)

* Recall Bellman’s update rule
Q(s,a) = r(s,a) + ymax Q(s', a)
a

* Replace Q-Table with function approximation (ie. a neural net)
* |dea: We're looking for an approximation where the above equation is true

4 2

Cost = |Q(s,a;0) — (r(s, a) + y max o(s', a; 9))

36
Technische Hochschule Niirnberg Georg Simon Ohm

ohm

DQN: Modeling Choices (1)

* Technically, our DQN should map (state, action) — Q value

 Would require separate inference for each action

* Instead: Predict Q value for all actions at the output layer

* Train using backpropagation

Technische Hochschule Niirnberg Georg Simon Ohm

s1

s2

sN

DQN

https://arxiv.org/abs/1312.5602

37

ohm

DQN: Modeling Choices (2)

« Mnih et al., 2013: DQN
« CNN applied to 5 consecutive frames (downsampled to 84x84) to model state

« 4-18 output values (one Q for each valid action)

- experience replay buffer: cache e, = (s,, a,, 1}, 5., ;) for efficient minibatch

 Q/Q-Target networks, ie. keep target network constant

38
Technische Hochschule Niirnberg Georg Simon Ohm

https://arxiv.org/abs/1312.5602

ohm

Summary

* Reinforcement learning learns from sequences of actions and their reward

Underlying theory

« Markov Decision Process (MDP)

« Bellman’s equation

Regular Q-Learning (Q-Table) requires coding of states and actions

Deep Q-Learning (DQN) allows to use encoding layers (eg. CNN for images) to
model state

Experience replay helps to speed up minibatch training

Technische Hochschule Niirnberg Georg Simon Ohm

39

